2023年高一数学教案:函数及其表示教案.docx
《2023年高一数学教案:函数及其表示教案.docx》由会员分享,可在线阅读,更多相关《2023年高一数学教案:函数及其表示教案.docx(11页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2023年高一数学教案:函数及其表示教案时间:2023-09-25 高一数学教案:函数及其表示教案。 做好教案课件是老师上好课的前提,大家正在计划自己的教案课件了。只有写好教案课件计划,可以更好完成工作任务!你们知道多少范文适合教案课件?为此,小编从网络上为大家精心整理了高一数学教案:函数及其表示教案,希望对您的工作和生活有所帮助。 小编为网友整理的高一数学教案:函数及其表示教案,希望对大家有所帮助! 重点难点教学: 1.正确理解映射的概念; 2.函数相等的两个条件; 3.求函数的定义域和值域。 一.教学过程: 1. 使学生熟练掌握函数的概念和映射的定义; 2. 使学生能够根据已知条件求出函数
2、的定义域和值域; 3. 使学生掌握函数的三种表示方法。 二.教学内容: 1.函数的定义 设A、B是两个非空的数集,如果按照某种确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有确定的数fx和它对应,那么称:fAB为从集合A到集合B的一个函数(function),记作: ,yfxxA 其中,x叫自变量,x的取值范围A叫作定义域(domain),与x的值对应的y值叫函数值,函数值的集合|fxxA叫值域(range)。显然,值域是集合B的子集。 注意: “y=f(x)”是函数符号,可以用任意的字母表示,如“y=g(x)”; 函数符号“y=f(x)”中的f(x)表示与x对应的函数值,一个数
3、,而不是f乘x. 2.构成函数的三要素 定义域、对应关系和值域。 3、映射的定义 设A、B是两个非空的集合,如果按某一个确定的对应关系f,使对于集合A中的任意 一个元素x,在集合B中都有确定的元素y与之对应,那么就称对应f:AB为从 集合A到集合B的一个映射。 4. 区间及写法: 设a、b是两个实数,且a (1) 满足不等式axb的实数x的集合叫做闭区间,表示为a,b; (2) 满足不等式axb的实数x的集合叫做开区间,表示为(a,b); 5.函数的三种表示方法 解析法 列表法 图像法 f132.CoM更多教案编辑推荐 高一数学教案:指数函数教案 小编为网友整理的高一数学教案:指数函数教案,希
4、望对大家有所帮助! 教学目标: 1、知识目标:使学生理解指数函数的定义,初步掌握指数函数的图像和性质。 2、能力目标:通过定义的引入,图像特征的观察、发现过程使学生懂得理论与实践 的辩证关系,适时渗透分类讨论的数学思想,培养学生的探索发现能力和分析问题、解决问题的能力。 3、情感目标:通过学生的参与过程,培养他们手脑并用、多思勤练的良好学习习惯和勇于探索、锲而不舍的治学精神。 教学重点、难点: 1、 重点:指数函数的图像和性质 2、 难点:底数 a 的变化对函数性质的影响,突破难点的关键是利用多媒体 动感显示,通过颜色的区别,加深其感性认识。 教学方法:引导发现教学法、比较法、讨论法 教学过程
5、: 一、事例引入 T:上节课我们学习了指数的运算性质,今天我们来学习与指数有关的函数。什么是函数? S: - T:主要是体现两个变量的关系。我们来考虑一个与医学有关的例子:大家对“非典”应该并不陌生,它与其它的传染病一样,有一定的潜伏期,这段时间里病原体在机体内不断地繁殖,病原体的繁殖方式有很多种,分裂就是其中的一种。我们来看一种球菌的分裂过程: C:动画演示(某种球菌分裂时,由1分裂成2个,2个分裂成4个,-。一个这样的球菌分裂x次后,得到的球菌的个数y与x的函数关系式是: y = 2 x ) S,T:(讨论) 这是球菌个数 y 关于分裂次数 x 的函数,该函数是什么样的形式(指数形式),
6、从 函数特征分析:底数 2 是一个不等于 1 的正数,是常量,而指数 x 却是变量,我们称这种函数为指数函数点题。 二、指数函数的定义 C:定义: 函数 y = a x (a0且a1)叫做指数函数, xR.。 问题 1:为何要规定 a 0 且 a 1? S:(讨论) C: (1)当 a 0,a1) log0.50.6 ,log0.5 ,ln 师:请同学们观察一下中这两个对数有何特征? 生:这两个对数底相等。 师:那么对于两个底相等的对数如何比大小? 生:可构造一个以a为底的对数函数,用对数函数的单调性比大小。 师:对,请叙述一下这道题的解题过程。 生:对数函数的单调性取决于底的大小:当0 调递
7、减,所以loga5.1loga5.9 ;当a1时,函数y=logax单调递 增,所以loga5.1 板书: 解:)当0 5.1loga5.9 )当a1时,函数y=logax在(0,+)上是增函数, 5.10,ln0,log0.51, log0.50.60时,就转化为不等式f(x)0,借助于函数图像与性质解决有关问题,而研究函数的性质,也离不开解不等式; (3)数列的通项或前n项和是自变量为正整数的函数,用函数的观点处理数列问题十分重要; (4)函数f(x)=(1+x)n (nN*)与二项式定理是密切相关的,利用这个函数用赋值法和比较系数法可以解决很多二项式定理的问题; (5)解析几何中的许多问
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2023 年高 数学教案 函数 及其 表示 教案
限制150内