2023年人教版初中数学教案三篇.docx
《2023年人教版初中数学教案三篇.docx》由会员分享,可在线阅读,更多相关《2023年人教版初中数学教案三篇.docx(70页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2023年人教版初中数学教案三篇时间:2023-09-25 人教版初中数学教案三篇。 每个老师不可缺少的课件是教案课件,规划教案课件的时刻悄悄来临了。将教案课件的工作计划制定好,新的工作才会如鱼得水!你们会写一段适合教案课件的范文吗?考虑到您的需要,小编特地编辑了“人教版初中数学教案三篇”,仅供参考,欢迎大家阅读。 教案是教师为顺利而有效地开展教学活动,根据课程标准,教学大纲和教科书要求及学生的实际情况,以课时或课题为单位,对教学内容、教学步骤、教学方法等进行的具体设计和安排的一种实用性教学文书。小编准备了人教版初中数学教案三篇,供大家参考! 公式法 理解一元二次方程求根公式的推导过程,了解公
2、式法的概念,会熟练应用公式法解一元二次方程复习具体数字的一元二次方程配方法的解题过程,引入ax2bxc0(a0)的求根公式的推导,并应用公式法解一元二次方程 重点求根公式的推导和公式法的应用难点一元二次方程求根公式的推导 一、复习引入1前面我们学习过解一元二次方程的“直接开平方法”,比如,方程(1)x24(2)(x2)27提问1这种解法的(理论)依据是什么?提问2这种解法的局限性是什么?(只对那种“平方式等于非负数”的特殊二次方程有效,不能实施于一般形式的二次方程)2面对这种局限性,怎么办?(使用配方法,把一般形式的二次方程配方成能够“直接开平方”的形式)(学生活动)用配方法解方程2x237x
3、(老师点评)略总结用配方法解一元二次方程的步骤(学生总结,老师点评)(1)先将已知方程化为一般形式;(2)化二次项系数为1;(3)常数项移到右边;(4)方程两边都加上一次项系数的一半的平方,使左边配成一个完全平方式;(5)变形为(xp)2q的形式,如果q0,方程的根是xpq;如果q0,方程无实根二、探索新知用配方法解方程:(1)ax27x30(2)ax2bx30如果这个一元二次方程是一般形式ax2bxc0(a0),你能否用上面配方法的步骤求出它们的两根,请同学独立完成下面这个问题问题:已知ax2bxc0(a0),试推导它的两个根x1bb24ac2a,x2bb24ac2a(这个方程一定有解吗?什
4、么情况下有解?)分析:因为前面具体数字已做得很多,我们现在不妨把a,b,c也当成一个具体数字,根据上面的解题步骤就可以一直推下去解:移项,得:ax2bxc二次项系数化为1,得x2baxca配方,得:x2bax(b2a)2ca(b2a)2即(xb2a)2b24ac4a24a20,当b24ac0时,b24ac4a20(xb2a)2(b24ac2a)2直接开平方,得:xb2ab24ac2a即xbb24ac2ax1bb24ac2a,x2bb24ac2a由上可知,一元二次方程ax2bxc0(a0)的根由方程的系数a,b,c而定,因此:(1)解一元二次方程时,可以先将方程化为一般形式ax2bxc0,当b2
5、4ac0时,将a,b,c代入式子xbb24ac2a就得到方程的根(2)这个式子叫做一元二次方程的求根公式(3)利用求根公式解一元二次方程的方法叫公式法公式的理解(4)由求根公式可知,一元二次方程最多有两个实数根例1用公式法解下列方程:(1)2x2x10(2)x21.53x(3)x22x120(4)4x23x20分析:用公式法解一元二次方程,首先应把它化为一般形式,然后代入公式即可补:(5)(x2)(3x5)0三、巩固练习教材第12页练习1.(1)(3)(5)或(2)(4)(6)四、课堂小结本节课应掌握:(1)求根公式的概念及其推导过程;(2)公式法的概念;(3)应用公式法解一元二次方程的步骤:
6、1)将所给的方程变成一般形式,注意移项要变号,尽量让a0;2)找出系数a,b,c,注意各项的系数包括符号;3)计算b24ac,若结果为负数,方程无解;4)若结果为非负数,代入求根公式,算出结果(4)初步了解一元二次方程根的情况五、作业布置教材第17页习题4 因式分解法 掌握用因式分解法解一元二次方程通过复习用配方法、公式法解一元二次方程,体会和探寻用更简单的方法因式分解法解一元二次方程,并应用因式分解法解决一些具体问题 重点用因式分解法解一元二次方程难点让学生通过比较解一元二次方程的多种方法感悟用因式分解法使解题更简便 一、复习引入(学生活动)解下列方程:(1)2x2x0(用配方法)(2)3x
7、26x0(用公式法)老师点评:(1)配方法将方程两边同除以2后,x前面的系数应为12,12的一半应为14,因此,应加上(14)2,同时减去(14)2.(2)直接用公式求解二、探索新知(学生活动)请同学们口答下面各题(老师提问)(1)上面两个方程中有没有常数项?(2)等式左边的各项有没有共同因式?(学生先答,老师解答)上面两个方程中都没有常数项;左边都可以因式分解因此,上面两个方程都可以写成:(1)x(2x1)0(2)3x(x2)0因为两个因式乘积要等于0,至少其中一个因式要等于0,也就是(1)x0或2x10,所以x10,x212.(2)3x0或x20,所以x10,x22.(以上解法是如何实现降
8、次的?)因此,我们可以发现,上述两个方程中,其解法都不是用开平方降次,而是先因式分解使方程化为两个一次式的乘积等于0的形式,再使这两个一次式分别等于0,从而实现降次,这种解法叫做因式分解法例1解方程:(1)10x4.9x20(2)x(x2)x20(3)5x22x14x22x34(4)(x1)2(32x)2思考:使用因式分解法解一元二次方程的条件是什么?解:略(方程一边为0,另一边可分解为两个一次因式乘积)练习:下面一元二次方程解法中,正确的是()A(x3)(x5)102,x310,x52,x113,x27B(25x)(5x2)20,(5x2)(5x3)0,x125,x235C(x2)24x0,
9、x12,x22Dx2x,两边同除以x,得x1三、巩固练习教材第14页练习1,2.四、课堂小结本节课要掌握:(1)用因式分解法,即用提取公因式法、十字相乘法等解一元二次方程及其应用(2)因式分解法要使方程一边为两个一次因式相乘,另一边为0,再分别使各一次因式等于0.五、作业布置教材第17页习题6,8,10,11 一元二次方程的根与系数的关系 1掌握一元二次方程的根与系数的关系并会初步应用2培养学生分析、观察、归纳的能力和推理论证的能力3渗透由特殊到一般,再由一般到特殊的认识事物的规律4培养学生去发现规律的积极性及勇于探索的精神 重点根与系数的关系及其推导难点正确理解根与系数的关系一元二次方程根与
10、系数的关系是指一元二次方程两根的和、两根的积与系数的关系 一、复习引入1已知方程x2ax3a0的一个根是6,则求a及另一个根的值2由上题可知一元二次方程的系数与根有着密切的关系其实我们已学过的求根公式也反映了根与系数的关系,这种关系比较复杂,是否有更简洁的关系?3由求根公式可知,一元二次方程ax2bxc0(a0)的两根为x1bb24ac2a,x2bb24ac2a.观察两式右边,分母相同,分子是bb24ac与bb24ac.两根之间通过什么计算才能得到更简洁的关系?二、探索新知解下列方程,并填写表格:方程 x1 x2 x1x2 x1x2x22x0 x23x40 x25x60 观察上面的表格,你能得
11、到什么结论?(1)关于x的方程x2pxq0(p,q为常数,p24q0)的两根x1,x2与系数p,q之间有什么关系?(2)关于x的方程ax2bxc0(a0)的两根x1,x2与系数a,b,c之间又有何关系呢?你能证明你的猜想吗?解下列方程,并填写表格:方程 x1 x2 x1x2 x1x22x27x40 3x22x50 5x217x60 小结:根与系数关系:(1)关于x的方程x2pxq0(p,q为常数,p24q0)的两根x1,x2与系数p,q的关系是:x1x2p,x1x2q(注意:根与系数关系的前提条件是根的判别式必须大于或等于零)(2)形如ax2bxc0(a0)的方程,可以先将二次项系数化为1,再
12、利用上面的结论即:对于方程ax2bxc0(a0)a0,x2baxca0x1x2ba,x1x2ca(可以利用求根公式给出证明)例1不解方程,写出下列方程的两根和与两根积:(1)x23x10(2)2x23x50(3)13x22x0 (4)2x26x3(5)x210 (6)x22x10例2不解方程,检验下列方程的解是否正确?(1)x222x10 (x121,x221)(2)2x23x80 (x17734,x25734)例3已知一元二次方程的两个根是1和2,请你写出一个符合条件的方程(你有几种方法?)例4已知方程2x2kx90的一个根是3,求另一根及k的值变式一:已知方程x22kx90的两根互为相反数
13、,求k;变式二:已知方程2x25xk0的两根互为倒数,求k.三、课堂小结1根与系数的关系2根与系数关系使用的前提是:(1)是一元二次方程;(2)判别式大于等于零四、作业布置1不解方程,写出下列方程的两根和与两根积(1)x25x30(2)9x2x2(3)6x23x20(4)3x2x102已知方程x23xm0的一个根为1,求另一根及m的值3已知方程x2bx60的一个根为2,求另一根及b的值 f132.CoM更多教案编辑推荐 人教版高中数学教案三篇 讲授新课前,做一份完美的教案,能够更大程度的调动学生在上课时的积极性,小编准备了以下内容,希望对你有帮助! 篇一 教学目标 1。使学生掌握的概念,图象和
14、性质。 (1)能根据定义判断形如什么样的函数是,了解对底数的限制条件的合理性,明确的定义域。 (2)能在基本性质的指导下,用列表描点法画出的图象,能从数形两方面认识的性质。 (3) 能利用的性质比较某些幂形数的大小,会利用的图象画出形如 的图象。 2。 通过对的概念图象性质的学习,培养学生观察,分析归纳的能力,进一步体会数形结合的思想方法。 3。通过对的研究,让学生认识到数学的应用价值,激发学生学习数学的兴趣。使学生善于从现实生活中数学的发现问题,解决问题。 教学建议 教材分析 (1) 是在学生系统学习了函数概念,基本掌握了函数的性质的基础上进行研究的,它是重要的基本初等函数之一,作为常见函数
15、,它既是函数概念及性质的第一次应用,也是今后学习对数函数的基础,同时在生活及生产实际中有着广泛的应用,所以应重点研究。 (2) 本节的教学重点是在理解定义的基础上掌握的图象和性质。难点是对底数 在 和 时,函数值变化情况的区分。 (3)是学生完全陌生的一类函数,对于这样的函数应怎样进行较为系统的理论研究是学生面临的重要问题,所以从的研究过程中得到相应的结论固然重要,但更为重要的是要了解系统研究一类函数的方法,所以在教学中要特别让学生去体会研究的方法,以便能将其迁移到其他函数的研究。 教法建议 (1)关于的定义按照课本上说法它是一种形式定义即解析式的特征必须是 的样子,不能有一点差异,诸如 ,
16、等都不是。 (2)对底数 的限制条件的理解与认识也是认识的重要内容。如果有可能尽量让学生自己去研究对底数,指数都有什么限制要求,教师再给予补充或用具体例子加以说明,因为对这个条件的认识不仅关系到对的认识及性质的分类讨论,还关系到后面学习对数函数中底数的认识,所以一定要真正了解它的由来。 关于图象的绘制,虽然是用列表描点法,但在具体教学中应避免描点前的盲目列表计算,也应避免盲目的连点成线,要把表列在关键之处,要把点连在恰当之处,所以应在列表描点前先把函数的性质作一些简单的讨论,取得对要画图象的存在范围,大致特征,变化趋势的大概认识后,以此为指导再列表计算,描点得图象。 教学设计示例 课题 教学目
17、标 1。 理解的定义,初步掌握的图象,性质及其简单应用。 2。 通过的图象和性质的学习,培养学生观察,分析,归纳的能力,进一步体会数形结合的思想方法。 3。 通过对的研究,使学生能把握函数研究的基本方法,激发学生的学习兴趣。 教学重点和难点 重点是理解的定义,把握图象和性质。 难点是认识底数对函数值影响的认识。 教学用具 投影仪 教学方法 启发讨论研究式 教学过程 一。 引入新课 我们前面学习了指数运算,在此基础上,今天我们要来研究一类新的常见函数。 1。6。(板书) 这类函数之所以重点介绍的原因就是它是实际生活中的一种需要。比如我们看下面的问题: 问题1:某种细胞*时,由1个*成2个,2个*
18、成4个,一个这样的细胞* 次后,得到的细胞*的个数 与 之间,构成一个函数关系,能写出 与 之间的函数关系式吗? 由学生回答: 与 之间的关系式,可以表示为 。 问题2:有一根1米长的绳子,第一次剪去绳长一半,第二次再剪去剩余绳子的一半,剪了 次后绳子剩余的长度为 米,试写出 与 之间的函数关系。 由学生回答: 。 在以上两个实例中我们可以看到这两个函数与我们前面研究的函数有所区别,从形式上幂的形式,且自变量 均在指数的位置上,那么就把形如这样的函数称为。 一。 的概念(板书) 1。定义:形如 的函数称为。(板书) 教师在给出定义之后再对定义作几点说明。 2。几点说明 (板书) (1) 关于对
19、 的规定: 教师首先提出问题:为什么要规定底数大于0且不等于1呢?(若学生感到有困难,可将问题分解为若 会有什么问题?如 ,此时 , 等在实数范围内相应的函数值不存在。 若 对于 都无意义,若 则 无论 取何值,它总是1,对它没有研究的必要。为了避免上述各种情况的发生,所以规定 且 。 (2)关于的定义域 (板书) 教师引导学生回顾指数范围,发现指数可以取有理数。此时教师可指出,其实当指数为无理数时, 也是一个确定的实数,对于无理指数幂,学过的有理指数幂的性质和运算法则它都适用,所以将指数范围扩充为实数范围,所以的定义域为 。扩充的另一个原因是因为使她它更具代表更有应用价值。 (3)关于是否是
20、的判断(板书) 刚才分别认识了中底数,指数的要求,下面我们从整体的角度来认识一下,根据定义我们知道什么样的函数是,请看下面函数是否是。 (1) , (2) , (3) (4) , (5) 。 学生回答并说明理由,教师根据情况作点评,指出只有(1)和(3)是,其中(3) 可以写成 ,也是指数图象。 最后提醒学生的定义是形式定义,就必须在形式上一摸一样才行,然后把问题引向深入,有了定义域和初步研究的函数的性质,此时研究的关键在于画出它的图象,再细致归纳性质。 3。归纳性质 作图的用什么方法。用列表描点发现,教师准备明确性质,再由学生回答。 函数 1。定义域 : 2。值域: 3。奇偶性 :既不是奇函
21、数也不是偶函数 4。截距:在 轴上没有,在 轴上为1。 对于性质1和2可以两条合在一起说,并追问起什么作用。(确定图象存在的大致位置)对第3条还应会证明。对于单调性,我建议找一些特殊点。,先看一看,再下定论。对最后一条也是指导函数图象画图的依据。(图象位于 轴上方,且与 轴不相交。) 在此基础上,教师可指导学生列表,描点了。取点时还要提醒学生由于不具备对称性,故 的值应有正有负,且由于单调性不清,所取点的个数不能太少。 此处教师可利用计算机列表描点,给出十组数据,而学生自己列表描点,至少六组数据。连点成线时,一定提醒学生图象的变化趋势(当 越小,图象越靠近 轴, 越大,图象上升的越快),并连出
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2023 年人教版 初中 数学教案
限制150内