2023年高三数学教案:排列.docx





《2023年高三数学教案:排列.docx》由会员分享,可在线阅读,更多相关《2023年高三数学教案:排列.docx(40页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2023年高三数学教案:排列时间:2023-09-25 高三数学教案:排列。 学生们有一个生动有趣的课堂,离不开老师辛苦准备的教案,是时候写教案课件了。在写好了教案课件计划后,才能够使以后的工作更有目标性!你们会写多少教案课件范文呢?小编为此仔细地整理了以下内容高三数学教案:排列,仅供参考,欢迎大家阅读。 教学目标 (1)正确理解排列的意义。能利用树形图写出简单问题的所有排列; (2)了解排列和排列数的意义,能根据具体的问题,写出符合要求的排列; (3)掌握排列数公式,并能根据具体的问题,写出符合要求的排列数; (4)会分析与数字有关的排列问题,培养学生的抽象能力和逻辑思维能力; (5)通过对
2、排列应用问题的学习,让学生通过对具体事例的观察、归纳中找出规律,得出结论,以培养学生严谨的学习态度。 教学建议 一、知识结构 二、重点难点分析 本小节的重点是排列的定义、排列数及排列数的公式,并运用这个公式去解决有关排列数的应用问题.难点是导出排列数的公式和解有关排列的应用题.突破重点、难点的关键是对加法原理和乘法原理的掌握和运用,并将这两个原理的基本思想方法贯穿在解决排列应用问题当中. 从n个不同元素中任取m(mn)个元素,按照一定的顺序排成一列,称为从n个不同元素中任取m个元素的一个排列.因此,两个相同排列,当且仅当他们的元素完全相同,并且元素的排列顺序也完全相同.排列数是指从n个不同元素
3、中任取m(mn)个元素的所有不同排列的种数,只要弄清相同排列、不同排列,才有可能计算相应的排列数.排列与排列数是两个概念,前者是具有m个元素的排列,后者是这种排列的不同种数.从集合的角度看,从n个元素的有限集中取出m个组成的有序集,相当于一个排列,而这种有序集的个数,就是相应的排列数. 公式推导要注意紧扣乘法原理,借助框图的直视解释来讲解.要重点分析好 的推导. 排列的应用题是本节教材的难点,通过本节例题的分析,应注意培养学生解决应用问题的能力. 在分析应用题的解法时,教材上先画出框图,然后分析逐次填入时的种数,这样解释比较直观,教学上要充分利用,要求学生作题时也应尽量采用. 在教学排列应用题
4、时,开始应要求学生写解法要有简要的文字说明,防止单纯的只写一个排列数,这样可以培养学生的分析问题的能力,在基本掌握之后,可以逐渐地不作这方面的要求. 三、教法建议 在讲解排列数的概念时,要注意区分“排列数”与“一个排列”这两个概念.一个排列是指“从n个不同元素中,任取出m个元素,按照一定的顺序摆成一排”,它不是一个数,而是具体的一件事;排列数是指“从n个不同元素中取出m个元素的所有排列的个数”,它是一个数.例如,从3个元素a,b,c中每次取出2个元素,按照一定的顺序排成一排,有如下几种: ab,ac,ba,bc,ca,cb, 其中每一种都叫一个排列,共有6种,而数字6就是排列数,符号 表示排列
5、数. 排列的定义中包含两个基本内容,一是“取出元素”,二是“按一定顺序排列”. 从定义知,只有当元素完全相同,并且元素排列的顺序也完全相同时,才是同一个排列,元素完全不同,或元素部分相同或元素完全相同而顺序不同的排列,都不是同一排列。叫不同排列. 在定义中“一定顺序”就是说与位置有关,在实际问题中,要由具体问题的性质和条件来决定,这一点要特别注意,这也是与后面学习的组合的根本区别. 在排列的定义中 ,如果 有的书上叫选排列,如果 ,此时叫全排列. 要特别注意,不加特殊说明,本章不研究重复排列问题. 关于排列数公式的推导的教学.公式推导要注意紧扣乘法原理,借助框图的直视解释来讲解.课本上用的是不
6、完全归纳法,先推导 , ,再推广到 ,这样由特殊到一般,由具体到抽象的讲法,学生是不难理解的. 导出公式 后要分析这个公式的构成特点,以便帮助学生正确地记忆公式,防止学生在“n”、“m”比较复杂的时候把公式写错.这个公式的特点可见课本第229页的一段话:“其中,公式右边第一个因数是n,后面每个因数都比它前面一个因数少1,最后一个因数是 ,共m个因数相乘.”这实际是讲三个特点:第一个因数是什么?最后一个因数是什么?一共有多少个连续的自然数相乘. 公式 是在引出全排列数公式 后,将排列数公式变形后得到的公式.对这个公式指出两点:(1)在一般情况下,要计算具体的排列数的值,常用前一个公式,而要对含有
7、字母的排列数的式子进行变形或作有关的论证,要用到这个公式,教材中第230页例2就是用这个公式证明的问题;(2)为使这个公式在 时也能成立,规定 ,如同 时 一样,是一种规定,因此,不能按阶乘数的原意作解释. 建议应充分利用树形图对问题进行分析,这样比较直观,便于理解. 学生在开始做排列应用题的作业时,应要求他们写出解法的简要说明,而不能只列出算式、得出答数,这样有利于学生得更加扎实.随着学生解题熟练程度的提高,可以逐步降低这种要求. f132.COM更多教案延伸阅读 高中高三数学教案:排列、组合、二项式定理-基本原理 排列、组合、二项式定理-基本原理 教学目标 (1)正确理解加法原理与乘法原理
8、的意义,分清它们的条件和结论;(2)能结合树形图来帮助理解加法原理与乘法原理;(3)正确区分加法原理与乘法原理,哪一个原理与分类有关,哪一个原理与分步有关; (4)能应用加法原理与乘法原理解决一些简单的应用问题,提高学生理解和运用两个原理的能力;(5)通过对加法原理与乘法原理的学习,培养学生周密思考、细心分析的良好习惯。 教学建议 一、知识结构 二、重点难点分析本节的重点是加法原理与乘法原理,难点是准确区分加法原理与乘法原理。加法原理、乘法原理本身是容易理解的,甚至是不言自明的。这两个原理是学习排列组合内容的基础,贯穿整个内容之中,一方面它是推导排列数与组合数的基础;另一方面它的结论与其思想在
9、方法本身又在解题时有许多直接应用。两个原理回答的,都是完成一件事的所有不同方法种数是多少的问题,其区别在于:运用加法原理的前提条件是, 做一件事有n类方案,选择任何一类方案中的任何一种方法都可以完成此事,就是说,完成这件事的各种方法是相互独立的;运用乘法原理的前提条件是,做一件事有n个骤,只要在每个步骤中任取一种方法,并依次完成每一步骤就能完成此事,就是说,完成这件事的各个步骤是相互依存的。简单的说,如果完成一件事情的所有方法是属于分类的问题,每次得到的是最后结果,要用加法原理;如果完成一件事情的方法是属于分步的问题,每次得到的该步结果,就要用乘法原理。 三、教法建议关于两个计数原理的教学要分
10、三个层次:第一是对两个计数原理的认识与理解这里要求学生理解两个计数原理的意义,并弄清两个计数原理的区别知道什么情况下使用加法计数原理,什么情况下使用乘法计数原理(建议利用一课时)第二是对两个计数原理的使用可以让学生做一下习题(建议利用两课时):用0,1,2,9可以组成多少个8位号码;用0,1,2,9可以组成多少个8位整数;用0,1,2,9可以组成多少个无重复数字的4位整数;用0,1,2,9可以组成多少个有重复数字的4位整数;用0,1,2,9可以组成多少个无重复数字的4位奇数;用0,1,2,9可以组成多少个有两个重复数字的4位整数等等第三是使学生掌握两个计数原理的综合应用,这个过程应该贯彻整个教
11、学中,每个排列数、组合数公式及性质的推导都要用两个计数原理,每一道排列、组合问题都可以直接利用两个原理求解,另外直接计算法、间接计算法都是两个原理的一种体现教师要引导学生认真地分析题意,恰当的分类、分步,用好、用活两个基本计数原理 教学设计示例 加法原理和乘法原理 教学目标 正确理解和掌握加法原理和乘法原理,并能准确地应用它们分析和解决一些简单的问题,从而发展学生的思维能力,培养学生分析问题和解决问题的能力 教学重点和难点 重点:加法原理和乘法原理 难点:加法原理和乘法原理的准确应用 教学用具 投影仪 教学过程设计 (一)引入新课 从本节课开始,我们将要学习中学代数内容中一个独特的部分排列、组
12、合、二项式定理它们研究对象独特,研究问题的方法不同一般虽然份量不多,但是与旧知识的联系很少,而且它还是我们今后学习概率论的基础,统计学、运筹学以及生物的选种等都与它直接有关至于在日常的工作、生活上,只要涉及安排调配的问题,就离不开它 今天我们先学习两个基本原理 (二)讲授新课 1介绍两个基本原理 先考虑下面的问题: 问题1:从甲地到乙地,可以乘火车,也可以乘汽车,还可以乘轮船一天中,火车有4个班次,汽车有2个班次,轮船有3个班次那么一天中乘坐这些交通工具从甲地到乙地,共有多少种不同的走法? 因为一天中乘火车有4种走法,乘汽车有2种走法,乘轮船有3种走法,每种走法都可以完成由甲地到乙地这件事情所
13、以,一天中乘坐这些交通工具从甲地到乙地共有4+2+3=9种不同的走法 这个问题可以总结为下面的一个基本原理(打出片子加法原理): 加法原理:做一件事,完成它可以有几类办法,在第一类办法中有m1种不同的方法,在第二类办法中有m2种不同的方法,在第n类办法中有mn种不同的方法那么,完成这件事共有N=m1+m2+mn种不同的方法 请大家再来考虑下面的问题(打出片子问题2): 问题2:由A村去B村的道路有3条,由B村去C村的道路有2条(见下图),从A村经B村去C村,共有多少种不同的走法? 这里,从A村到B村,有3种不同的走法,按这3种走法中的每一种走法到达B村后,再从B村到C村又各有2种不同的走法,因
14、此,从A村经B村去C村共有32=6种不同的走法 一般地,有如下基本原理(找出片子乘法原理): 乘法原理:做一件事,完成它需要分成n个步骤,做第一步有m1种不同的方法,做第二步有m2种不同的方法,做第n步有mn种不同的方法那么,完成这件事共有Nm1m2mn种不同的方法 2浅释两个基本原理 两个基本原理的用途是计算做一件事完成它的所有不同的方法种数 比较两个基本原理,想一想,它们有什么区别? 两个基本原理的区别在于:一个与分类有关,一个与分步有关 看下面的分析是否正确(打出片子题1,题2): 题1:找110这10个数中的所有合数第一类办法是找含因数2的合数,共有4个;第二类办法是找含因数3的合数,
15、共有2个;第三类办法是找含因数5的合数,共有1个 110中一共有N=421=7个合数 题2:在前面的问题2中,步行从A村到B村的北路需要8时,中路需要4时,南路需要6时,B村到C村的北路需要5时,南路需要3时,要求步行从A村到C村的总时数不超过12时,共有多少种不同的走法? 第一步从A村到B村有3种走法,第二步从B村到C村有2种走法,共有N=32=6种不同走法 题2中的合数是4,6,8,9,10这五个,其中6既含有因数2,也含有因数3;10既含有因数2,也含有因数5题中的分析是错误的 从A村到C村总时数不超过12时的走法共有5种题2中从A村走北路到B村后再到C村,只有南路这一种走法 (此时给出
16、题1和题2的目的是为了引导学生找出应用两个基本原理的注意事项,这样安排,不但可以使学生对两个基本原理的理解更深刻,而且还可以培养学生的学习能力) 进行分类时,要求各类办法彼此之间是相互排斥的,不论哪一类办法中的哪一种方法,都能单独完成这件事只有满足这个条件,才能直接用加法原理,否则不可以 如果完成一件事需要分成几个步骤,各步骤都不可缺少,需要依次完成所有步骤才能完成这件事,而各步要求相互独立,即相对于前一步的每一种方法,下一步都有m种不同的方法,那么计算完成这件事的方法数时,就可以直接应用乘法原理 也就是说:类类互斥,步步独立 (在学生对问题的分析不是很清楚时,教师及时地归纳小结,能使学生在应
17、用两个基本原理时,思路进一步清晰和明确,不再简单地认为什么样的分类都可以直接用加法,只要分步而不管是否相互联系就用乘法从而深入理解两个基本原理中分类、分步的真正含义和实质) (三)应用举例 现在我们已经有了两个基本原理,我们可以用它们来解决一些简单问题了 例1 书架上放有3本不同的数学书,5本不同的语文书,6本不同的英语书 (1)若从这些书中任取一本,有多少种不同的取法? (2)若从这些书中,取数学书、语文书、英语书各一本,有多少种不同的取法? (3)若从这些书中取不同的科目的书两本,有多少种不同的取法? (让学生思考,要求依据两个基本原理写出这3个问题的答案及理由,教师巡视指导,并适时口述解
18、法) (1)从书架上任取一本书,可以有3类办法:第一类办法是从3本不同数学书中任取1本,有3种方法;第二类办法是从5本不同的语文书中任取1本,有5种方法;第三类办法是从6本不同的英语书中任取一本,有6种方法根据加法原理,得到的取法种数是 Nm1m2m335614故从书架上任取一本书的不同取法有14种 (2)从书架上任取数学书、语文书、英语书各1本,需要分成三个步骤完成,第一步取1本数学书,有3种方法;第二步取1本语文书,有5种方法;第三步取1本英语书,有6种方法根据乘法原理,得到不同的取法种数是N=m1m2m3=356=90故,从书架上取数学书、语文书、英语书各1本,有90种不同的方法 (3)
19、从书架上任取不同科目的书两本,可以有3类办法:第一类办法是数学书、语文书各取1本,需要分两个步骤,有35种方法;第二类办法是数学书、英语书各取1本,需要分两个步骤,有36种方法;第三类办法是语文书、英语书各取1本,有56种方法一共得到不同的取法种数是N=353656=63即,从书架任取不同科目的书两本的不同取法有63种 例2 由数字0,1,2,3,4可以组成多少个三位整数(各位上的数字允许重复)? 解:要组成一个三位数,需要分成三个步骤:第一步确定百位上的数字,从14这4个数字中任选一个数字,有4种选法;第二步确定十位上的数字,由于数字允许重复,共有5种选法;第三步确定个位上的数字,仍有5种选
20、法根据乘法原理,得到可以组成的三位整数的个数是N=455=100 答:可以组成100个三位整数 教师的连续发问、启发、引导,帮助学生找到正确的解题思路和计算方法,使学生的分析问题能力有所提高教师在第二个例题中给出板书示范,能帮助学生进一步加深对两个基本原理实质的理解,周密的考虑,准确的表达、规范的书写,对于学生周密思考、准确表达、规范书写良好习惯的形成有着积极的促进作用,也可以为学生后面应用两个基本原理解排列、组合综合题打下基础. (四)归纳小结 归纳什么时候用加法原理、什么时候用乘法原理: 分类时用加法原理,分步时用乘法原理 应用两个基本原理时需要注意分类时要求各类办法彼此之间相互排斥;分步
21、时要求各步是相互独立的 (五)课堂练习 p222:练习14 (对于题4,教师有必要对三个多项式乘积展开后各项的构成给以提示) (六)布置作业 p222:练习5,6,7 补充题: 1在所有的两位数中,个位数字小于十位数字的共有多少个? (提示:按十位上数字的大小可以分为9类,共有98721=45个个位数字小于十位数字的两位数) 2某学生填报高考志愿,有m个不同的志愿可供选择,若只能按第一、二、三志愿依次填写3个不同的志愿,求该生填写志愿的方式的种数 (提示:需要按三个志愿分成三步,共有m(m-1)(m-2)种填写方式) 3在所有的三位数中,有且只有两个数字相同的三位数共有多少个? (提示:可以用
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2023 年高 数学教案 排列

限制150内