《1_1随机事件.ppt》由会员分享,可在线阅读,更多相关《1_1随机事件.ppt(18页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、概率统计概率统计下页结束返回2013-2014学年第二学期概率论与数理统计概率论与数理统计任课教师:郭洪杰郭洪杰部 门:信息学院办公室:南S417 本部文理大楼725下页概率统计概率统计下页结束返回作业:作业:每周一收、发作业,批改三分之一每周一收、发作业,批改三分之一 每位同学要在作业纸左上角写上每位同学要在作业纸左上角写上编号编号(第一周由课代表负责第一周由课代表负责)、姓名、专业、班级姓名、专业、班级,课代表按编号,课代表按编号由小到大排好由小到大排好答疑:答疑:如果需要由课代表告知老师,集中答疑如果需要由课代表告知老师,集中答疑与课本配套的辅导书:与课本配套的辅导书:考试:期末考试周考
2、试:期末考试周 考试成绩考试成绩=30%*平时成绩平时成绩+70%*期末成绩期末成绩概率统计概率统计下页结束返回确定性的确定性的现象象:这类现象是在一定条件下,必定会象是在一定条件下,必定会导致致某种确定的某种确定的结果果 不确定性的现象不确定性的现象:这类现象是在一定条件下,它的结果这类现象是在一定条件下,它的结果是不确定的。是不确定的。大量地重复大量地重复实现一一组条件,条件,结果所呈果所呈现出来的某种出来的某种规律律性,叫做性,叫做统计规律性律性。概率论和数理统计就是研究大量同类随机现象的统计概率论和数理统计就是研究大量同类随机现象的统计规律性的数学学科。规律性的数学学科。概率统计概率统
3、计下页结束返回当大的概率来保证某一判断是正确的,并可以控制发生错误的概当大的概率来保证某一判断是正确的,并可以控制发生错误的概概率论概率论是根据大量同类随机现象的统计规律,对随机现是根据大量同类随机现象的统计规律,对随机现象出现某一结果的可能性作出客观的科学判断,对这种出现的可象出现某一结果的可能性作出客观的科学判断,对这种出现的可能性大小做出数量上的描述;比较这些可能性的大小、研究它们能性大小做出数量上的描述;比较这些可能性的大小、研究它们之间的联系,从而形成一整套数学理论和方法之间的联系,从而形成一整套数学理论和方法数理统计数理统计是应用概率的理论来研究大量随机现象的规律是应用概率的理论来
4、研究大量随机现象的规律性;对通过科学安排的一定数量的实验所得到的统计方法给出严性;对通过科学安排的一定数量的实验所得到的统计方法给出严格的理论证明;并判定各种方法应用的条件以及方法、公式、结格的理论证明;并判定各种方法应用的条件以及方法、公式、结论的可靠程度和局限性。使我们能从一组样本来判定是否能以相论的可靠程度和局限性。使我们能从一组样本来判定是否能以相率率概率统计概率统计下页结束返回概率论与数理统计概率论与数理统计一、随机试验一、随机试验 二、随机事件二、随机事件.1.1 随机事件及其运算随机事件及其运算第一章 事件与概率三、事件间的关系与运算三、事件间的关系与运算下页概率统计概率统计下页
5、结束返回1.1 随机事件随机事件E1:口袋中有编号分别为口袋中有编号分别为1,2,3,4,5,6的的6个球,从中任取一球个球,从中任取一球 观察其编号观察其编号E2:一个家庭有两个孩子,了解两个孩子的性别:一个家庭有两个孩子,了解两个孩子的性别E3:一批灯泡,从中任取一只,测试它的寿命一批灯泡,从中任取一只,测试它的寿命一、一、随机试验随机试验 E随机试验特点:随机试验特点:1.在相同的条件下试验可以重复地进行在相同的条件下试验可以重复地进行;(可重复性);(可重复性)2.每次试验的可能结果不唯一,且能事先明确试验的所有可每次试验的可能结果不唯一,且能事先明确试验的所有可能结果;能结果;(可观
6、察性可观察性)3.进行一次试验以前不能确定哪一个结果会出现(不确定进行一次试验以前不能确定哪一个结果会出现(不确定性)性)下页下页概率统计概率统计下页结束返回二、二、随机事件随机事件 如在如在E2中中:2=男男,男男,女女,女女,男男,女女,女女,男男在在E1中:中:A=“编编 号号 为为 偶偶 数数”=2,4,6;B=“编编 号号 为为 奇奇 数数”=1,3,5;C=“编号大于编号大于6”=f f ;D=“编号不大于编号不大于6”样本空间样本空间:试验:试验E的所有样本点组成的集合称为试验的所有样本点组成的集合称为试验E的样本空的样本空间,记为间,记为,即即=随机事件随机事件:在一次试验中可
7、能出现,也可能不出现的结果称为:在一次试验中可能出现,也可能不出现的结果称为随机事件,简称事件,它构成了随机事件,简称事件,它构成了的一个子集记为的一个子集记为A、B、C等等必然事件必然事件:;不可能事件不可能事件:f f事件发生事件发生:当且仅当事件:当且仅当事件A中的某一样本点出现,我们说事件中的某一样本点出现,我们说事件A发生发生下页下页样本点样本点:试验:试验E的每一个可能的结果,称为样本点记为的每一个可能的结果,称为样本点记为概率统计概率统计下页结束返回解:解:E有四个样本点:有四个样本点:正,正正,正,正,反正,反,反,正反,正,反,反反,反于是于是 =正,正正,正,正,反正,反,
8、反,正反,正,反,反反,反;A=正,正正,正;C=正,正正,正,正,反正,反,反,正反,正B=正,正正,正,反,反反,反;例例1.E:将一枚硬币抛两次,观察正面反面出现的情况:将一枚硬币抛两次,观察正面反面出现的情况写出写出E的样本空间以及事件的样本空间以及事件A=“两次都出现正面两次都出现正面”,B=“两次出现同一面两次出现同一面”,C=“出现正面出现正面”包含的样本点包含的样本点下页下页概率统计概率统计下页结束返回10 事件的包含事件的包含 三三、事件间的关系与运算、事件间的关系与运算30 事件的互不相容事件的互不相容 50 事件的积事件的积60 事件的差事件的差下页下页例例2.任取一件圆
9、锥形产品,规定只任取一件圆锥形产品,规定只有当产品的直径、高度和重量都合格有当产品的直径、高度和重量都合格时才算合格,否则就算不合格产品。时才算合格,否则就算不合格产品。若令若令A1=“产品合格产品合格”,A2=“产品不合格产品不合格”,B1=“直径合格直径合格”,B2=“直径不合格直径不合格”,C1=“高度合格高度合格”,C2=“高度不合格高度不合格”,D1=“重量合格重量合格”,D2=“重量不合格重量不合格”,请用它们表示下面的关系。请用它们表示下面的关系。40 事件的和事件的和20 事件的相等事件的相等 概率统计概率统计下页结束返回 如:如:A=“至少一粒发芽至少一粒发芽”,B=“至少至
10、少20粒发芽粒发芽”,C=“种子种子发芽发芽”,有,有三三、事件的关系与运算事件的关系与运算下页下页10 事件的包含事件的包含 AB在在例例2中有,中有,20 事件的相等事件的相等 若事件若事件A发生必然导致事件发生必然导致事件B发发生,则称生,则称事件事件B包含事件包含事件A,或,或事件事件A包含于事件包含于事件B,记为,记为 或或 .若若 且且 ,则称,则称事件事件A与与B相等相等,记为,记为AB.概率统计概率统计下页结束返回性质:性质:一次试验中样本点是互不相容的;一次试验中样本点是互不相容的;下页下页BA在在例例2中有,中有,30 事件的互不相容事件的互不相容 若事件若事件A与与B不能
11、同时发生,则称事不能同时发生,则称事件件A与与B是是互不相容的互不相容的或或互斥的互斥的.如果一组事件中任意两个事件都互不相容,则称这组事件如果一组事件中任意两个事件都互不相容,则称这组事件两两互不相容两两互不相容.在在E1中:中:A=“编号不大于编号不大于2”=1,2;B=“编号为编号为3”=3;C=“编号大于编号大于4”=5,6概率统计概率统计下页结束返回 “事件事件A与事件与事件B至少有一个发生至少有一个发生”的事件称为的事件称为A与与B的和事件,称为的和事件,称为事事件件A与事件与事件B的和事件的和事件,记为,记为AB下页下页AB40 事件的和事件的和 在在例例2中有,中有,A2=B2
12、C2D2.“n个事件个事件A1,A2,An中至少有一个事件发生中至少有一个事件发生”的事的事件称为件称为A1,A2,An的和事件,记作的和事件,记作A1 A2An 或或“可列个事件可列个事件A1,A2,An,中至少有一个发生中至少有一个发生”的的事件称为事件称为A1,A2,An,的和事件,记作的和事件,记作A1A2An或或概率统计概率统计下页结束返回性质:性质:Af ff f;AA。下页下页 50 事件的积事件的积AB “事件事件A与事件与事件B同时发生同时发生”的事件的事件称为称为事件事件A与与B的积事件的积事件,记为记为AB或或AB.在在例例2中有,中有,A1=B1C1D1.“n个事件个事
13、件A1,A2,An同时发生的事件同时发生的事件”的事件称为事的事件称为事件件A1,A2,An 的积事件,记作的积事件,记作A1A2An或或A1A2An,简记为,简记为 “可列个事件可列个事件A1,A2,An,同时发生的事件同时发生的事件”的事件的事件称为事件称为事件A1,A2,An,的积事件,记作的积事件,记作A1A2An 或或A1A2An ,简记为,简记为 概率统计概率统计下页结束返回 “事件事件A发生而事件发生而事件B不发生不发生”的的事件称为事件称为事件事件A与与B的差事件的差事件,记作,记作 AB.性质:性质:(1)A-B=A-AB ;下页下页 60 事件的差事件的差ABAAB 在在例
14、例2中有,中有,B1-C1表示直径表示直径合格但高度不合格合格但高度不合格.(2)A-B,AB,B-A 两两互不相容两两互不相容.(2)(3)A-B,AB,B-A 两两互不相容两两互不相容.概率统计概率统计下页结束返回 若事件若事件A与事件与事件B不能同时发不能同时发生,但二者必发生其一,即事件生,但二者必发生其一,即事件A与与B满足条件,满足条件,AB=,A B=,则则称事件称事件A与与B互为互为对立对立逆逆事件事件,又称,又称A是是B的的对立事件对立事件(或(或B是是A的对立事件),记为的对立事件),记为注:注:对立事件一定是互斥事件;互斥事件未必是对立事件。对立事件一定是互斥事件;互斥事
15、件未必是对立事件。从而有,从而有,显然,显然,“A不发生不发生”可记作可记作下页下页A在在例例2中有,中有,问题:问题:概率统计概率统计下页结束返回随机事件的运算规律随机事件的运算规律幂等律幂等律:交换律交换律:结合律结合律:分配律分配律:德摩根定律德摩根定律:下页下页概率统计概率统计下页结束返回例例3.设设A、B、C 为三个事件,则为三个事件,则(1)只有只有A发生可以表示为:发生可以表示为:(5)A、B、C至多有一个发生:至多有一个发生:(4)A、B、C 都发生:都发生:(3)A、B、C 中至少有一个发生可以表示为:中至少有一个发生可以表示为:ABCA、B、C不都发生:不都发生:A、B、C都不发生:都不发生:(6)A发生,发生,B、C 至少有一个不发生可以表示为:至少有一个不发生可以表示为:(2)A、B、C 中恰有一个发生可表示为:中恰有一个发生可表示为:下页下页概率统计概率统计下页结束返回 作业:作业:5-6页页 2,3,4 结束
限制150内