概率论第四章(二).ppt
《概率论第四章(二).ppt》由会员分享,可在线阅读,更多相关《概率论第四章(二).ppt(36页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、第二节第二节 方差方差方差的定义方差的定义方差的计算方差的计算方差的性质方差的性质切比雪夫不等式切比雪夫不等式课堂练习课堂练习 小结小结 布置作业布置作业 上一节我们介绍了随机变量的数学期望,上一节我们介绍了随机变量的数学期望,它体现了随机变量取值的平均水平,是随机变它体现了随机变量取值的平均水平,是随机变量的一个重要的数字特征量的一个重要的数字特征.但是在一些场合,仅仅知道平均值是不够的但是在一些场合,仅仅知道平均值是不够的.例如,某零件的真实长度为例如,某零件的真实长度为a,现用甲、现用甲、乙两台仪器各测量乙两台仪器各测量10次,将测量结果次,将测量结果X用坐用坐标上的点表示如图:标上的点
2、表示如图:若让你就上述结果评价一下两台仪器的优若让你就上述结果评价一下两台仪器的优劣,你认为哪台仪器好一些呢?劣,你认为哪台仪器好一些呢?乙仪器测量结果乙仪器测量结果 甲仪器测量结果甲仪器测量结果较好较好测量结果的测量结果的均值都是均值都是 a因为乙仪器的测量结果集中在均值附近因为乙仪器的测量结果集中在均值附近又如又如,甲、乙两门炮同时向一目标射击甲、乙两门炮同时向一目标射击10发发炮弹,其落点距目标的位置如图:炮弹,其落点距目标的位置如图:你认为哪门炮射击效果好一些呢你认为哪门炮射击效果好一些呢?甲炮射击结果甲炮射击结果乙炮射击结果乙炮射击结果乙炮乙炮因为乙炮的弹着点较集中在中心附近因为乙炮
3、的弹着点较集中在中心附近.中心中心中心中心 由此可见由此可见,研究随机变量与其均值的偏离程度是十研究随机变量与其均值的偏离程度是十分必要的分必要的.那么那么,用怎样的量去度量这个偏离程度呢用怎样的量去度量这个偏离程度呢?容容易看到易看到这个数字特征就是我们这一讲要介绍的这个数字特征就是我们这一讲要介绍的方差方差 能度量随机变量与其均值能度量随机变量与其均值E(X)的偏离程度的偏离程度.但由于但由于上式带有绝对值上式带有绝对值,运算不方便运算不方便,通常用量通常用量来度量随机变量来度量随机变量X与其均值与其均值E(X)的偏离程度的偏离程度.一、方差的定义一、方差的定义 设设X是一个随机变量,若是
4、一个随机变量,若E(X-E(X)2存在存在,称称E(X-E(X)2为为 X 的方差的方差.记为记为D(X)或或Var(X),即即D(X)=Var(X)=EX-E(X)2若若X的取值比较分散,则方差的取值比较分散,则方差D(X)较大较大.方差刻划了随机变量的取值对于其数学期望的方差刻划了随机变量的取值对于其数学期望的离散程度离散程度.若若X的取值比较集中,则方差的取值比较集中,则方差D(X)较小;较小;因此,因此,D(X)是刻画是刻画X取值分散程度的一个量,它取值分散程度的一个量,它是衡量是衡量X取值分散程度的一个尺度。取值分散程度的一个尺度。X为离散型,为离散型,分布率分布率PX=xk=pk
5、由定义知,方差是随机变量由定义知,方差是随机变量 X 的函数的函数 g(X)=X-E(X)2 的的数学期望数学期望.二、方差的计算二、方差的计算X为连续型,为连续型,X概率密度概率密度f(x)计算方差的一个简化公式计算方差的一个简化公式 D(X)=E(X2)-E(X)2 展开展开证:证:D(X)=EX-E(X)2=EX2-2XE(X)+E(X)2=E(X2)-2E(X)2+E(X)2=E(X2)-E(X)2利用期望利用期望性质性质例例1设设随机变量随机变量X具有具有(01)分布,其分布率为)分布,其分布率为求求D(X).解解由公式由公式因此因此,0-1分布分布例例2解解X的分布率为的分布率为上
6、节已算得上节已算得因此因此,泊松分布泊松分布例例3解解 因此因此,均匀分布均匀分布例例4设随机变量设随机变量X服从指数分布服从指数分布,其概率密度为其概率密度为解解由此可知由此可知,指数分布指数分布三、方差的性质三、方差的性质 1.设设C 是常数是常数,则则 D(C)=0;2.若若 C 是常数是常数,则则 D(CX)=C2 D(X);3.设设 X 与与 Y 是两个随机变量,则是两个随机变量,则 D(X+Y)=D(X)+D(Y)+2EX-E(X)Y-E(Y)4.D(X)=0 PX=C=1,这里这里C=E(X)下面我们证明性质下面我们证明性质3证明证明若若 X,Y 相互独立相互独立,由数学期望的性
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 概率论 第四
限制150内