教育专题:231平面向量基本定理.ppt
《教育专题:231平面向量基本定理.ppt》由会员分享,可在线阅读,更多相关《教育专题:231平面向量基本定理.ppt(10页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、 总结:1、平面向量基本定理内容2、对基本定理的理解(1)实数对1、的存在性和唯一性()基底的不唯一性()定理的拓展性、平面向量基本定理的应用求作向量、解(证)向量问题、解(证)平面几何问题 设 a、b是两个不共线的向量,已知AB=2a+kb,CB=a+3b,CD=2a b,若A、B、D三点共线,求k的值。A、B、D三点共线解:AB与BD共线,则存在实数使得AB=BD.使得AB=BD.思考思考k=8.=a 4b由于BD=CD CB =(2a b)(a+3b)则需 2a+kb=(a 4b)由向量相等的条件得2=k=4则需 2a+kb=(a 4b)2-=0k 4 =0此处可另解:k=8.即(2-)
2、a+(k-4 )b=0随堂练习随堂练习坐标是坐标是A A、(3,2)B(3,2)B、(2,3)C(2,3)C、(-3,-2)D(-3,-2)D、(-2,-3)(-2,-3)BA A、x=1,y=3 Bx=1,y=3 B、x=3,y=1x=3,y=1C C、x=1,y=-3 Dx=1,y=-3 D、x=5,y=-1x=5,y=-1B标标坐标为坐标为A A、(x-2,y+1)B(x-2,y+1)B、(x+2,y-1)(x+2,y-1)C C、(-2-x,1-y)D(-2-x,1-y)D、(x+2,y+1)(x+2,y+1)CBB标标的坐标为的坐标为(i,j),(i,j),则点则点A A的坐标为的坐
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 教育 专题 231 平面 向量 基本 定理
限制150内