人教版九年级上册数学第二十一章《一元二次方程》ppt课件(含复习共10课时).ppt
《人教版九年级上册数学第二十一章《一元二次方程》ppt课件(含复习共10课时).ppt》由会员分享,可在线阅读,更多相关《人教版九年级上册数学第二十一章《一元二次方程》ppt课件(含复习共10课时).ppt(193页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、21.1 一元二次方程第二十一章 一元二次方程导入新课讲授新课当堂练习课堂小结 义务教育教科书义务教育教科书(RJ)(RJ)九上九上数学课件课件学习目标1.理解一元二次方程的概念.(难点)2.根据一元二次方程的一般形式,确定各项系数.3.理解并灵活运用一元二次方程概念解决有关问题.(重点)导入新课导入新课复习引入没有未知数1.下列式子哪些是方程?2+6=82x+35x+6=22x+3y=8x-518代数式一元一次方程二元一次方程不等式分式方程2.什么叫方程?我们学过哪些方程?含有未知数的等式叫做方程.我们学过的方程有一元一次方程,二元一次方程(组)及分式方程,其中前两种方程是整式方程.3.什么
2、叫一元一次方程?含有一个未知数,且未知数的次数是1的整式方程叫做一元一次方程.想一想:什么叫一元二次方程呢?问题1 有一块矩形铁皮,长100cm,宽50cm,在它的四角各切去一个正方形,然后将四周凸出部分折起,就能制作一个无盖方盒,如果要制作的方盒的底面积为3600cm2,那么铁皮各角应切去多大的正方形?请根据题意列出方程.100cm50cmx3600cm2解:设切去的正方形的边长为xcm,则盒底的长为(100-2x)cm,宽为(50-2x)cm,根据方盒的底面积为3600cm2,得整理,得化简,得该方程中未知数的个数和最高次数各是多少?一元二次方程的概念一讲授新课讲授新课问题2 要组织要组织
3、一次排球邀请赛,参赛的每两队之间都要比赛一场,根据场地和时间等条件,赛程计划安排7天,每天安排4场比赛,比赛组织者应邀请多少个队参加比赛?解析:设应邀请x个队参赛,每个队都要与其他(x-1)个队各赛一场,因为甲队对乙队的比赛和乙队对甲队的比赛是同一场比赛,所以全部比赛共 场.解:根据题意,列方程:整理得:化简,得:该方程中未知数的个数和最高次数各是多少?观察与思考 方程、都不是一元一次方程.那么这两个方程与一元一次方程的区别在哪里?它们有什么共同特点呢?特点:都是整式方程;只含一个未知数;未知数的最高次数是2.知识要点u一元二次方程的概念一元二次方程的概念 像这样的等号两边都是整式,只含有一个
4、未知数(一元),并且未知数的最高次数是2(二次)的方程叫做一元二次方程.u一元二次方程的一般形式是一元二次方程的一般形式是ax2+bx+c=0 (a0)二次项系数一次项系数常数项ax2+bx+c=0强调:“=”左边最多有三项,一次项、常数项可不出现,但二次项必须有;“=”左边按未知数 x 的降幂排列;“=”右边必须整理为0.想一想 为什么一般形式中ax2+bx+c=0要限制a0,b、c 可以为零吗?当 a=0 时bxc=0 当 a 0,b=0时,ax2c=0 当 a 0,c=0时,ax2bx=0 当 a 0,b=c=0时,ax2=0 总 结:只 要 满 足a 0,b,c 可 以 为任 意 实
5、数.典例精析例1 下列选项中,关于x的一元二次方程的是()C不是整式方程含两个未知数化简整理成x2-3x+2=0少了限制条件a0提示 判断一个方程是不是一元二次方程,首先看是不是整式方程;如是再进一步化简整理后再作判断.例2:a为何值时,下列方程为一元二次方程?(1)ax2-x=2x2(2)(a-1)x a+1-2x-7=0.解:(1)将方程式转化为一般形式,得(a-2)x2-x=0,所以当a-20,即a2时,原方程是一元二次方程;(2)由a+1=2,且a-1 0知,当a=-1时,原方程是一元二次方程.方法总结:用一元二次方程的定义求字母的值的方法:根据未知数的最高次数等于2,列出关于某个字母
6、的方程,再排除使二次项系数等于0的字母的值 例3:将方程3x(x-1)=5(x+2)化为一般形式,并分别指出它们的二次项、一次项和常数项及它们的系数.解:去括号,得3x2-3x=5x+10.移项、合并同类项,得一元二次方程的一般形式3x2-8x-10=0.其中二次项是3x2,系数是3;一次项是-8x,系数是-8;常数项是-10.系数和项均包含前面的符号.注意一元二次方程的根二u一元二次方程的根 使一元二次方程等号两边相等的未知数的值叫作一元二次方程的解(又叫做根).练一练:下面哪些数是方程 x2 x 6=0 的解?-4,-3,-2,-1,0,1,2,3,4解:3和-2.你注意到了吗?一元二次方
7、程可能不止一个根.例4.:已知a是方程 x2+2x2=0 的一个实数根,求 2a2+4a+2017的值.解:由题意得方法总结:已知解求代数式的值,先把已知解代入,再注意观察,有时需运用到整体思想,求解时,将所求代数式的一部分看作一个整体,再用整体思想代入求值当堂练习当堂练习 1.下列哪些是一元二次方程?3x+2=5x-2x2=0(x+3)(2x-4)=x23y2=(3y+1)(y-2)x2=x3+x2-13x2=5x-12.填空:方程一般形式二次项系数一次项系数常数项-21313-540-53-23.已知关于x的一元二次方程x2+ax+a=0的一个根是3,求a的值.解:由题意得把x=3代入方程
8、x2+ax+a=0,得32+3a+a=09+4a=04a=-94.若关于x的一元二次方程(m+2)x2+5x+m2-4=0有一个根为0,求m的值.二次项系数不为零不容忽视解:将x=0代入方程m2-4=0,解得m=2.m+2 0,m-2,综上所述:m=2.拓广探索 已知关于x的一元二次方程 ax2+bx+c=0(a0)一个根为1,求a+b+c的值.解:由题意得思考:1.若 a+b+c=0,你能通过观察,求出方程ax2+bx+c=0(a0)的一个根吗?解:由题意得方程ax2+bx+c=0(a0)的一个根是1.2.若 a-b+c=0,4a+2b+c=0,你能通过观察,求出方程ax2+bx+c=0(a
9、0)的一个根吗?x=2课堂小结课堂小结一元二次方程概念是整式方程;含一个未知数;最高次数是2.一般形式ax2+bx+c=0 (a 0)其中(a0)是一元二次方程的必要条件;确定一元二次方程的二次项系数、一次项系数及常数项要先化为一般式.根使方程左右两边相等的未知数的值.见本课时练习课后作业课后作业谢谢!21.2.1 配方法第二十一章 一元二次方程导入新课讲授新课当堂练习课堂小结第1课时 直接开平方法 义务教育教科书义务教育教科书(RJ)(RJ)九上九上数学课件课件学习目标1.会把一元二次方程降次转化为两个一元一次方程.(难点)2.运用开平方法解形如x2=p或(x+n)2=p(p0)的方程.(重
10、点)导入新课导入新课复习引入平方根1.如果 x2=a,则x叫做a的 .2.如果 x2=a(a 0),则x=.3.如果 x2=64,则x=.84.任何数都可以作为被开方数吗?负数不可以作为被开方数.讲授新课讲授新课直接开平方法的概念一 问题1 一桶油漆可刷的面积为1500dm2,李林用这桶油漆恰好刷完10个同样的正方体形状的盒子的全部外表面,你能算出盒子的棱长吗?解:设正方体的棱长为x dm,则一个正方体的表面积为6x2dm2,根据一桶油漆可刷的面积,列出方程106x2=1500,由此可得x2=25根据平方根的意义,得即x1=5,x2=5.可以验证,5和5是方程 的两根,但是棱长不能是负值,所以
11、正方体的棱长为5dmx=5,试一试 解下列方程,并说明你所用的方法,与同伴交流.(1)x2=4(2)x2=0(3)x2+1=0解:根据平方根的意义,得x1=2,x2=-2.解:根据平方根的意义,得x1=x2=0.解:根据平方根的意义,得 x2=-1,因为负数没有平方根,所以原方程无解.(2)当p=0 时,方程(I)有两个相等的实数根 =0;(3)当p0 时,根据平方根的意义,方程(I)有两个不等的实数根 ,;利用平方根的定义直接开平方求一元二次方程的根的方法叫直接开平方法.归纳 例1 利用直接开平方法解下列方程:(1)x2=6;(2)x2900=0.解:(1)x2=6,直接开平方,得(2)移项
12、,得 x2=900.直接开平方,得 x=30,x1=30,x2=30.典例精析在解方程(I)时,由方程x2=25得x=5.由此想到:(x+3)2=5,得得用直接开平方法解方程二对照上面解方程(I)的方法,你认为怎样解方程(x+3)2=5探究交流于是,方程(x+3)2=5的两个根为 上面的解法中,由方程得到,实质上是把一个一元二次方程“降次”,转化为两个一元一次方程,这样就把方程转化为我们会解的方程了.解题归纳例2 解下列方程:(x1)2=2;典例精析 解析:第1小题中只要将(x1)看成是一个整体,就可以运用直接开平方法求解.即x1=-1+,x2=-1-解:(1)x+1是2的平方根,x+1=解析
13、:第2小题先将4移到方程的右边,再同第1小题一样地解.例2 解下列方程:(2)(x1)24=0;即x1=3,x2=-1.解:解:(2)移项,得(x-1)2=4.x-1是4的平方根,x-1=2.典例精析 x1=,x2=例2 解下列方程:(3)12(32x)23=0.典例精析解析:第3小题先将3移到方程的右边,再两边都除以12,再同第1小题一样地去解,然后两边都除以-2即可.解:(3)移项,得12(3-2x)2=3,两边都除以12,得(3-2x)2=0.25.3-2x是0.25的平方根,3-2x=0.5.即3-2x=0.5,3-2x=-0.5 首先将一元二次方程化为左边是含有未知数的一个完全平方式
14、,右边是非负数的形式,然后用平方根的概念求解.1.能用直接开平方法解的一元二次方程有什么特点?如果一个一元二次方程具有x2=p或(xn)2=p(p0)的形式,那么就可以用直接开平方法求解.2.用直接开平方法解一元二次方程的一般步骤是什么?3.任意一个一元二次方程都能用直接开平方法求解吗?请举例说明.探讨交流当堂练习当堂练习 (C)4(x-1)2=9,解方程,得4(x-1)=3,x1=;x2=(D)(2x+3)2=25,解方程,得解方程,得2x+3=5,x1=1;x2=-4 1、下列解方程的过程中,正确的是()(A)x2=-2,解方程,得x=(B)(x-2)2=4,解方程,得x-2=2,x=4
15、D(1)方程x2=0.25的根是 .(2)方程2x2=18的根是 .(3)方程(2x-1)2=9的根是 .3.解下列方程:(1)x2-810;(2)2x250;(3)(x1)2=4.x1=0.5,x2=-0.5x13,x2-3x12,x212.2.填空填空:解:x19,x29;解:x15,x25;解:x11,x23.4.4.(请你当小老师)下面是李昆同学解答的一道一元二次方程的具体过程,你认为他解的对吗?如果有错,指出具体位置并帮他改正.解:解:不对,从开始错,应改为能力拓展:方程x2+6x+4=0可以用直接开平方法解吗?如果不能,那么请你思考能否将其转化成平方形式?课堂小结课堂小结直接开平方
16、法概 念步 骤基本思路利用平方根的定义求方程的根的方法关键要把方程化成x2=p(p 0)或(x+n)2=p(p 0).一元二次方程两个一元一次方程降次直接开平方法见本课时练习课后作业课后作业谢谢!21.2.1 配方法第二十一章 一元二次方程导入新课讲授新课当堂练习课堂小结第2课时 配方法 义务教育教科书义务教育教科书(RJ)(RJ)九上九上数学课件课件学习目标1.了解配方的概念.2.掌握用配方法解一元二次方程及解决有关问题.(重点)3.探索直接开平方法和配方法之间的区别和联系.(难点)导入新课导入新课复习引入(1)9x2=1;(2)(x-2)2=2.想一想:2 2.下列方程能用直接开平方法来解
17、吗下列方程能用直接开平方法来解吗?练一练:1.用直接开平方法解下列方程:(1)x2+6x+9=5;(2)x2+6x+4=0.把两题转化成(x+n)2=p(p0)的形式,再利用开平方讲授新课讲授新课配方的方法一问题问题1.你还记得吗?填一填下列完全平方公式.(1)a2+2ab+b2=()2;(2)a2-2ab+b2=()2.a+ba-b探究交流问题问题2.填上适当的数或式,使下列各等式成立.(1)x2+4x+=(x+)2(2)x2-6x+=(x-)2(3)x2+8x+=(x+)2(4)x2-x+=(x-)2你发现了什么规律?探究交流222323424二次项系数为1的完全平方式:常数项等于一次项系
18、数一半的平方.归纳总结想一想:x2+px+()2=(x+)2配方的方法用配方法解方程二探究交流怎样解方程(2)x2+6x+4=0问题1 方程(2)怎样变成(x+n)2=p的形式呢?解:x2+6x+4=0 x2+6x=-4移项 x2+6x+9=-4+9两边都加上9二次项系数为1的完全平方式:常数项等于一次项系数一半的平方.方法归纳在方程两边都加上一次项系数一半的平方.注意是在二次项系数为1的前提下进行的.问题2 为什么在方程x2+6x=-4的两边加上9?加其他数行吗?不行,只有在方程两边加上一次项系数一半的平方,方程左边才能变成完成平方x2+2bx+b2的形式.方程配方的方法:要点归纳像这样通过
19、配成完全平方式来解一元二次方程,叫做配方法.配方法的定义配方法解方程的基本思路把方程化为(x+n)2=p的形式,将一元二次方程降次,转化为一元一次方程求解配方法解方程的基本步骤一移常数项;二配方配上 ;三写成(x+n)2=p(p 0);四直接开平方法解方程.典例精析例1 解下列方程:解:(1)移项,得x28x=1,配方,得x28x+42=1+42,(x4)2=15由此可得即配方,得由此可得二次项系数化为1,得解:移项,得2x23x=1,方程的二次项系数不是1时,为便于配方,可以将方程各项的系数除以二次项系数即移项和二次项系数化为1这两个步骤能不能交换一下呢?配方,得 因为实数的平方不会是负数,
20、所以x取任何实数时,(x1)2都是非负数,即上式都不成立,所以原方程无实数根解:移项,得二次项系数化为1,得为什么方程两边都加12?即即配方法的应用二典例精析例2.试用配方法说明:不论k取何实数,多项式k24k5的值必定大于零.解:k24k5=k24k41=(k2)21因为(因为(k2)20,所以(,所以(k2)211.所以k24k5的值必定大于零.归纳总结配方法的应用 类别类别 解题策略解题策略1.求最值或求最值或证明代数式证明代数式的值为恒正的值为恒正(或负)(或负)对于一个关于x的二次多项式通过配方成a(x+m)2n的形式后,(x+m)20,n为常数,为常数,当当a0时,可知其最小值;当
21、a0时,可知其最大值.2.完全平方完全平方式中的配方式中的配方如:已知x22mx16是一个完全平方式,所以一次项系数一半的平方等于16,即m2=16,m=4.3.利用配方利用配方构成非负数构成非负数和的形式和的形式对于含有多个未知数的二次式的等式,求未知数的值,解题突破口往往是配方成多个完全平方式得其和为0,再根据非负数的和为0,各项均为0,从而求解.如:a2b24b4=0,则a2(b2)2=0,即a=0,b=2.当堂练习当堂练习1.解下列方程:(1)x2+4x-9=2x-11;(;(2)x(x+4)=8x+12;(3)4x2-6x-3=0;(4)3x2+6x-9=0.解:x2+2x+2=0,
22、(x+1)2=-1.此方程无解;解:x2-4x-12=0,(x-2)2=16.x1=6,x2=-2;解:x2+2x-3=0,(x+1)2=4.x1=-3,x2=1.2.如图,在一块长35m、宽26m的矩形地面上,修建同样宽的两条互相垂直的道路,剩余部分栽种花草,要使剩余部分的面积为850m2,道路的宽应为多少?解:设道路的宽为xm,根据题意得(35-x)(26-x)=850,整理得x2-61x+60=0.解得x1=60(不合题意,舍去),x2=1.答:道路的宽为1m.3.应用配方法求最值.(1)2x2-4x+5的最小值;(2)-3x2+5x+1的最大值.解:(1)2x2-4x+5 =2(x-1
23、)2+3 当x=1时有最小值3 (2)-3x2+12x-16=-3(x-2)2-4 当x=2时有最大值-4课堂小结课堂小结配方法定 义通过配成完全平方形式解一 元 二 次 方 程 的 方 法.方 法在方程两边都配上步 骤一移常数项;二配方配上 ;三写成(x+n)2=p(p 0);四直接开平方法解方程.特别提醒:在使用配方法解方程之前先把方程化为x2+px+q=0的形式.应 用求代数式的最值或证明见本课时练习课后作业课后作业谢谢!21.2 解一元二次方程第二十一章 一元二次方程导入新课讲授新课当堂练习课堂小结21.2.2 公式法 义务教育教科书义务教育教科书(RJ)(RJ)九上九上数学课件课件学
24、习目标1.经历求根公式的推导过程.(难点)2.会用公式法解简单系数的一元二次方程.(重点)3.理解并会计算一元二次方程根的判别式.4.会用判别式判断一元二次方程的根的情况.导入新课导入新课复习引入1.用配方法解一元二次方程的步骤有哪几步?2.如何用配方法解方程2x2+4x+1=0?讲授新课讲授新课 求根公式的推导一 任何一个一元二次方程都可以写成一般形式 ax2+bx+c=0 ()能否也用配方法得出()的解呢?用配方法解一般形式的一元二次方程 ax2+bx+c=0 (a0).方程两边都除以a 解:移项,得配方,得即用配方法解一般形式的一元二次方程 ax2+bx+c=0 (a0).即一元二次方程
25、一元二次方程的求根公式的求根公式特别提醒a 0,4a20,当b2-4ac 0时,用配方法解一般形式的一元二次方程 ax2+bx+c=0 (a0).a 0,4a20,当b2-4ac 0时,而x取任何实数都不能使上式成立.因此,方程无实数根.由上可知,一元二次方程ax2+bx+c=0 (a0)的根由方程的系数a,b,c确定因此,解一元二次方程时,可以先将方程化为一般形式ax2+bx+c=0 (a0),当b2-4ac 0 时,将a,b,c 代入式子 就得到方程的根,这个式子叫做一元二次方程的求根公式,利用它解一元二次方程的方法叫做公式法,由求根公式可知,一元二次方程最多有两个实数根.注意 用公式法解
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 一元二次方程 人教版 九年级 上册 数学 第二十一 一元 二次方程 ppt 课件 复习 10 课时
限制150内