微分方程模型1.ppt
《微分方程模型1.ppt》由会员分享,可在线阅读,更多相关《微分方程模型1.ppt(30页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、在研究实际问题时,常常会联系到某些变量的变化率或导数,这样所得到变量之间的关系式就是微分方模型。微分方程模型反映的是变量之间的间接关系,因此,要得到直接关系,就得求微分方程。求解微分方程有三种方法:1)求精确解;2)求数值解(近似解);3)定性理论方法。建立微分方程模型的方法(1)根据规律列方程利用数学、力学、物理、化学等学科中的定理或经过实验检验的规律等来建立微分方程模型。(2)微元分析法利用已知的定理与规律寻找微元之间的关系式,与第一种方法不同的是对微元而不是直接对函数及其导数应用规律。(3)模拟近似法在生物、经济等学科的实际问题中,许多现象的规律性不很清楚,即使有所了解也是极其复杂的,建
2、模时在不同的假设下去模拟实际的现象,建立能近似反映问题的微分方程,然后从数学上求解或分析所建方程及其解的性质,再去同实际情况对比,检验此模型能否刻画、模拟某些实际现象。观众厅地面设计观众厅地面设计1 问题的提出在影视厅或报告厅,经常会为前边观众遮挡住自己的视线而苦恼。显然,场内的观众都在朝台上看,如果场内地面不做成前低后高的坡度模式,那么前边观众必然会遮挡后面观众的视线。试建立数学模型设计良好的报告厅地面坡度曲线。建立坐标系oo处在台上的设计视点bb第一排观众的眼睛到x轴的垂 直距离xyadda第一排观众与设计视点的水平距离d相邻两排的排距视线升高标准x表示任一排与设计视点的水平距离求任一排x
3、与设计视点o的竖直距离函数使此曲线满足视线的无遮挡要求。问题2 问题的假设1)观众厅地面的纵剖面图一致,只需求中轴线上地面的起伏曲线即可。2)同一排的座位在同一等高线上。3)每个坐在座位上的观众的眼睛与地面的距离相等。4)每个坐在座位上的观众的头与地面的距离也相等。5)所求曲线只要使观众的视线从紧邻的前一个座位的人的头顶擦过即可。3 建模设眼睛升起曲线应满足微分方程初始条件obxyadd1)从第一排起,观众眼睛与o点的连线的斜率随排数的增加而增加,而眼睛升起曲线显然与这些直线皆相交,故此升起曲线是凹的。2)选择某排和相邻排oyx-dC(x,0)C2(x+d,0)MM2M1xN1ABN相似于D再
4、计算相似于4 模型求解 微分不等式(比较定理)设函数定义在某个区域上,且满足1)在D上满足存在唯一性定理的条件;2)在D上有不等式则初值问题与的解在它们共同存在区间上满足所求曲线的近似曲线方程(折衷法)折衷法5 总结与讨论有时只需求近似解。方法利用微分不等式建模;模型讨论obxyadd1)视点移动时升起曲线如何求得?2)怎样减少地面的坡度?调整参数、相邻排错位。3)衡量经济的指标?座位尽量多、升起曲线占据的空间尽量少等。一一 古尸年代鉴定问题古尸年代鉴定问题在巴基斯坦一个洞穴里,发现了具有古在巴基斯坦一个洞穴里,发现了具有古代尼安德特人特征的人骨碎片,科学家把它代尼安德特人特征的人骨碎片,科学
5、家把它带到实验室,作碳带到实验室,作碳14年代测定,分析表明,年代测定,分析表明,与的比例仅仅是活组织内的与的比例仅仅是活组织内的6.24%,能,能否判断此人生活在多少年前?否判断此人生活在多少年前?年代测定:年代测定:活体中的碳有一小部分是放射性同位素,这种放射性碳是由于宇宙射线在高层大气中的撞击引起的,经过一系列交换过程进入活组织内,直到在生物体内达到平衡浓度,这意味着在活体中,的数量与稳定的的数量成定比,生物体死亡后,交换过程就停止了,放射性碳便以每年八千分之一的速度减少。背景背景设 t 为死后年数,年代测定的修订:年代测定的修订:19661966年,耶鲁实验室的年,耶鲁实验室的Minz
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 微分方程 模型
限制150内