高数总复习课件.pptx
《高数总复习课件.pptx》由会员分享,可在线阅读,更多相关《高数总复习课件.pptx(66页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、定义域对应法则2.函数的特性有界性,单调性,奇偶性,周期性.3.基本初等函数的性质1.函数的定义及函数的二要素4.初等函数的结构一一.函数函数1.收敛数列的性质:唯一性;有界性;保号性;(1)函数极限的六种定义(2)函数极限的性质:局部保号性与左右极限等价定理唯一性定理局部有界性2.函数极限二.极限3.极限运算法则(1)无穷小运算法则(2)极限四则运算法则(3)复合函数极限运算法则注意使用条件有限个无穷小的和还是无穷小.有界函数与无穷小的乘积是无穷小.常数与无穷小的乘积是无穷小.有限个无穷小的乘积是无穷小.(1)数列极限存在的夹逼准则函数极限存在的夹逼准则(2)单调有界数列必有极限两个重要极限
2、或注注:代表相同的表达式4.极限存在准则5.无穷小的比较设 ,对同一自变量的变化过程为无穷小,且 是 的高阶无穷小 是 的低阶无穷小 是 的同阶无穷小 是 的等价无穷小 是 的 k 阶无穷小常用等价无穷小常用等价无穷小:注注1.上述上述11个等价无穷小(包括反、对、幂、个等价无穷小(包括反、对、幂、指、三)必须熟练掌握指、三)必须熟练掌握6.求极限方法 1、代数方法(去零因子、通分、根有理化、恒等变形、分子分母同除x的最高次等)。2、两个重要极限公式的灵活运用 =1,3、洛必达法则(7种未定式的求法)、(通用代数变形)、4、等价无穷小替换的灵活运用(通过代数变形)。5、幂指函数型 ,求极限对数
3、法!6、无穷小乘有界函数=无穷小。7、利用函数连续性求极限。8、变限函数在求极限中(变限函数求导)结论:2.已知分式函数若则若求去公因子再求1.已知多项式则为非负常数)注意这个极限的特征:注意这个极限的特征:底为两项之和,第一项为底为两项之和,第一项为1,第二项,第二项是是 无穷小量,指数与第二项互为倒数无穷小量,指数与第二项互为倒数。型型洛必达法则洛必达法则(1)若则有(2)幂指函数型 ,求极限对数法!左连续右连续第一类间断点可去间断点:跳跃间断点:左右极限不相等第二类间断点无穷间断点:振荡间断点:函数值在 的去心邻域(左右极限至少有一个不存在)在点间断的类型在点连续的等价形式(左右极限都存
4、在)内变动无限多次左右极限相等,但不等于函数值或无定义3.连续与可导连续与可导注:函数符号f 和极限号 可以交换次序。3.初等函数的连续性基本初等函数在定义域内连续连续函数经四则运算仍连续连续函数的复合函数连续一切初等函数在定义区间内连续连续可积可导可微结论:1.导数的实质:2.增量比的极限;4.判断可导性不连续,一定不可导.直接用导数定义;看左右导数是否存在且相等.3.导数的几何意义:切线的斜率;切线方程切线方程:法线方程法线方程:微分:记可导可微5.初等函数的求导问题初等函数的求导问题 1.常数和基本初等函数的导数(P95)2.有限次四则运算的求导法则(C为常数)3.复合函数求导法则4.初
5、等函数在定义区间内可导初等函数在定义区间内可导,且导数仍为初等函数且导数仍为初等函数5.求导数(微分)1.熟悉导数定义的极限表达式运算 2.复合函数可导(注意:抽象复合函数可导)3.隐函数求 4.参数方程求 5.变限积分在上面n种情况下求导 6.分段函数求导(注意:分段点处的求法)1、隐函数的导数、隐函数的导数若由方程可确定 y 是 x 的函数,由表示的函数,称为显函数显函数.例如例如,可确定显函数可确定 y 是 x 的函数,但此隐函数不能显化.函数为隐函数隐函数.则称此隐函数求导方法求导方法:两边对 x 求导(注意 y=y(x)(含导数 的方程)(隐函数的显化)(隐函数的显化)观察函数观察函
6、数方法方法:先在方程两边取对数先在方程两边取对数,然后利用隐函数的求导然后利用隐函数的求导方法求出导数方法求出导数.-对数求导法对数求导法适用范围适用范围:对数求导法对数求导法,可用来求,可用来求幂指函数幂指函数和和多个因子连乘积多个因子连乘积函数、开方函数、开方及其它适用于对数化简的函数的求导及其它适用于对数化简的函数的求导对数求导法对数求导法2.若参数方程可确定一个 y 与 x 之间的函数可导,且则时,有时,有(此时看成 x 是 y 的函数)关系,若上述参数方程中二阶可导,且则由它确定的函数可求二阶导数.利用新的参数方程,可得导数应用导数应用1.微分中值定理的条件、结论及关系罗尔定理拉格朗
7、日中值定理柯西中值定理2.微分中值定理的应用关键关键:利用逆向思维设辅助函数费马引理(1)证明恒等式(2)证明不等式(3)证明有关中值问题的结论一、一、微分中值定理及其应用微分中值定理及其应用二、二、导数应用导数应用1.研究函数的性态:增减,极值,凹凸,拐点,渐近线,2.解决最值问题 目标函数的建立与简化 最值的判别问题3.其他应用:求不定式极限;几何应用;证明不等式;1.可导函数单调性判别在 I 上单调递增在 I 上单调递减2.曲线凹凸与拐点的判别+拐点拐点 连续曲线上有切线的凹凸分界点(极值第一判别法极值第一判别法)且在空心邻域内有导数,(1)“左左正正右右负负”,(2)“左左负负右右正正
8、”,如果f(x)在x0的两侧保持相同符号,则x0不是f(x)的极值点.3.极值(极值第二判别法极值第二判别法)二阶导数,且则 在点 取极大值;则 在点 取极小值.欲求连续函数f(x)的极值点,需(1)求出f(x)的定义域.(4)如果函数在驻点处的函数的二阶导数易求,可以利用判定极值第二充分条件判定其是否为极值点.(2)求出 .在f(x)的定义域内求出f(x)的全部驻点及导数不存在的点.(3)判定在上述点两侧 的符号,利用判定极值第一充分条件判定其是否为极值点.4.最值问题最值问题 则其最值只能在极值点极值点或端点端点处达到.求函数最值的方法求函数最值的方法:(1)求 在 内的极值可疑点(2)最
9、大值最小值(驻点或导数不存在的点)特别特别:当 在 内只有一个一个极值可疑点时,当 在 上单调单调时,最值必在端点处达到.若在此点取极大 值,则也是最大 值.(小)对应用问题,有时可根据实际意义实际意义判别求出的可疑点是否为最大 值点或最小值点.(小)5.5.渐近线渐近线若则曲线有水平渐近线若则曲线有铅直渐近线斜渐近线若求积分求积分 1.凑微分法凑微分法 2.换元法换元法 3.分步积分法分步积分法 4.奇偶函数在对称区间上的积分奇偶函数在对称区间上的积分 5.换元法与分步积分法的结合换元法与分步积分法的结合 6.一些小技巧一些小技巧 不定积分一、不定积分的基本概念与性质一、不定积分的基本概念与
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高数总 复习 课件
限制150内