823事件的相互性(一).ppt
《823事件的相互性(一).ppt》由会员分享,可在线阅读,更多相关《823事件的相互性(一).ppt(21页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、8.2.3事件的相互独事件的相互独立性(一)立性(一)高二数学高二数学 选修选修2-3什么叫做互斥事件?什么叫做对立事件什么叫做互斥事件?什么叫做对立事件?两个互斥事件两个互斥事件A、B有一个发生的概率公式是有一个发生的概率公式是什么?什么?若若A与与A为对立事件,则为对立事件,则P(A)与)与P(A)关系关系如何?如何?不可能同时发生的两个事件不可能同时发生的两个事件叫做互斥事件;叫做互斥事件;如果两个互斥如果两个互斥事件有一个发生时另一个必不发生事件有一个发生时另一个必不发生,这样的两个互斥事件,这样的两个互斥事件叫对立事件叫对立事件.P(A+B)=P(A)+(B)P(A)+P()=1复习
2、回顾复习回顾(4).条件概率条件概率 设事件设事件A和事件和事件B,且,且P(A)0,在已知事件在已知事件A发发生的条件下事件生的条件下事件B发生的概率,叫做发生的概率,叫做条件概率条件概率。记作记作P(B|A).(5).条件概率计算公式条件概率计算公式:复习回顾复习回顾注意条件:必须注意条件:必须 P(A)0问题探究:问题探究:下面看一例下面看一例 在大小均匀的在大小均匀的5个鸡蛋中有个鸡蛋中有3个红皮蛋,个红皮蛋,2个白皮个白皮蛋,每次取一个,有放回地取两次,求在已知第一次蛋,每次取一个,有放回地取两次,求在已知第一次取到红皮蛋的条件下,第二次取到红皮蛋的概率。取到红皮蛋的条件下,第二次取
3、到红皮蛋的概率。我们知道,当事件我们知道,当事件A的发生对事件的发生对事件B的发生有影的发生有影响时,条件概率响时,条件概率P(B|A)和概率和概率P(B)一般是不相等的,一般是不相等的,但有时事件但有时事件A的发生,看上去对事件的发生,看上去对事件B的发生没有影的发生没有影响,响,比如依次抛掷两枚硬币的结果(事件比如依次抛掷两枚硬币的结果(事件A)对抛掷第二枚对抛掷第二枚硬币的结果(事件硬币的结果(事件B)没有影响,这时没有影响,这时P(B|A)与与P(B)相等吗相等吗?1、事件的相互独立性、事件的相互独立性相互独立事件及其同时发生的概率相互独立事件及其同时发生的概率设设A,B为两个事件,如
4、果为两个事件,如果 P(AB)=P(A)P(B),则称事则称事件件A与事件与事件B相互独立相互独立。即事件即事件A(或(或B)是否发生是否发生,对事件对事件B(或(或A)发生的发生的概率没有影响,这样两个事件叫做相互独立事件概率没有影响,这样两个事件叫做相互独立事件。如果事件如果事件A与与B相互独立,那么相互独立,那么A与与B,A与与B,A与与B是不是是不是相互独立的相互独立的注:注:区别:区别:互斥事件和相互独立事件是两个不同概念:互斥事件和相互独立事件是两个不同概念:两个事件互斥两个事件互斥是指这两个事件不可能同时发生是指这两个事件不可能同时发生;两个事件相互独立两个事件相互独立是指一个事
5、件的发生与否对另一个事件是指一个事件的发生与否对另一个事件发生的概率没有影响。发生的概率没有影响。相互独立相互独立2、相互独立事件同时发生的概率公式:、相互独立事件同时发生的概率公式:“第一、第二次都取到红皮蛋第一、第二次都取到红皮蛋”是一个事件,是一个事件,它的发生就是事件它的发生就是事件A,B同时发生,将它记作同时发生,将它记作AB 这就是说,两个相互独立事件同时发生的概率,这就是说,两个相互独立事件同时发生的概率,等于每个事件的概率的积。等于每个事件的概率的积。一般地,如果事件一般地,如果事件A1,A2,An相互独立,那么这相互独立,那么这n个个事件同时发生的概率等于每个事件发生的概率的
6、积,即事件同时发生的概率等于每个事件发生的概率的积,即P(A1A2An)=P(A1)P(A2)P(An)两个相互独立事件两个相互独立事件A,B同时发生同时发生,即事件即事件AB发生的概生的概率率为:试一试试一试 判断事件判断事件A,B 是否为互斥是否为互斥,互独事件互独事件?1.篮球比赛篮球比赛“罚球二次罚球二次”.事件事件A表示表示“第第1球罚中球罚中”,事件事件B表示表示“第第2球罚中球罚中”.2.篮球比赛篮球比赛“1+1罚球罚球”.事件事件A表示表示“第第1球罚中球罚中”,事件事件B表示表示“第第2球罚中球罚中”.3.袋中有袋中有4个白球个白球,3个黑球个黑球,从袋中依此取从袋中依此取2
7、球球.事件事件A:“取出的是白球取出的是白球”.事件事件B:“取出的是黑球取出的是黑球”(不放回抽取不放回抽取)4.袋中有袋中有4个白球个白球,3个黑球个黑球,从袋中依此取从袋中依此取2球球.事件事件A为为“取出的是白球取出的是白球”.事件事件B为为“取出的是白取出的是白球球”.(放回抽取放回抽取)A与与B为互独事件为互独事件A与与B不是互独事件不是互独事件A与与B为互独事件为互独事件A与与B为非互独也非互斥事件为非互独也非互斥事件例例1 某商场推出二次开奖活动,凡购买一定价值的商某商场推出二次开奖活动,凡购买一定价值的商品可以获得一张奖券。奖券上有一个兑奖号码,可以品可以获得一张奖券。奖券上
8、有一个兑奖号码,可以分别参加两次抽奖方式相同的兑奖活动。如果两次兑分别参加两次抽奖方式相同的兑奖活动。如果两次兑奖活动的中奖概率都是奖活动的中奖概率都是0.05,求两次抽奖中以下事件的求两次抽奖中以下事件的概率:概率:(1)都抽到某一指定号码;都抽到某一指定号码;(2)恰有一次抽到某一指定号码;)恰有一次抽到某一指定号码;(3)至少有一次抽到某一指定号码。)至少有一次抽到某一指定号码。例例2 甲、乙二人各进行甲、乙二人各进行1 1次射击比赛,如果次射击比赛,如果2 2人人 击中目标的概率都是击中目标的概率都是0.60.6,计算:,计算:(1)两人都击中目标的概率)两人都击中目标的概率;(2)其
9、中恰由)其中恰由1人击中目标的概率人击中目标的概率(3)至少有一人击中目标的概率)至少有一人击中目标的概率解:解:(1)记记“甲射击甲射击1次次,击中目标击中目标”为为事件事件A.“乙乙射射 击击1次次,击中目标击中目标”为为事件事件B.答:两人都击中目标的概率是答:两人都击中目标的概率是0.36且且A与与B相互独立,相互独立,又又A与与B各射击各射击1次次,都击中目标都击中目标,就是事件就是事件A,B同同时发生,时发生,根据相互独立事件的概率的乘法公式根据相互独立事件的概率的乘法公式,得到得到P(AB)=P(A)P(B)=0.60.60.36例例2 甲、乙二人各进行甲、乙二人各进行1次射击比
10、赛,如果次射击比赛,如果2人击人击中目标的概率都是中目标的概率都是0.6,计算:,计算:(2)其中恰有其中恰有1人击中目标的概率?人击中目标的概率?解:解:“二人各射击二人各射击1次,次,恰有恰有1人击中目标人击中目标”包括两种情包括两种情况况:一种是甲击中一种是甲击中,乙未击中(事件乙未击中(事件 )答:其中恰由答:其中恰由1人击中目标的概率为人击中目标的概率为0.48.根据互斥事件的概率加法公式和相互独立根据互斥事件的概率加法公式和相互独立事件的概率乘法公式,所求的概率是事件的概率乘法公式,所求的概率是 另一种是另一种是甲未击中,乙击中(事件甲未击中,乙击中(事件B发生)。发生)。BA 根
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 823 事件 相互
限制150内