浙江高考历年真题之解析几何大题(理科)(共12页).doc
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_05.gif)
《浙江高考历年真题之解析几何大题(理科)(共12页).doc》由会员分享,可在线阅读,更多相关《浙江高考历年真题之解析几何大题(理科)(共12页).doc(12页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上浙江高考历年真题之解析几何大题(教师版)1、(2005年)如图,已知椭圆的中心在坐标原点,焦点在x轴上,长轴的长为4,左准线与x轴的交点为M,|MA1|A1F1|21 ()求椭圆的方程; ()若直线:xm(|m|1),P为上的动点,使最大的点P记为Q,求点Q的坐标(用m表示)解析:()设椭圆方程为,半焦距为,则,() 设,当时,;当时,只需求的最大值即可设直线的斜率,直线的斜率,当且仅当时,最大,2、(2006年)如图,椭圆1(ab0)与过点A(2,0)、B(0,1)的直线有且只有一个公共点T,且椭圆的离心率e=。()求椭圆方程;()设F、F分别为椭圆的左、右焦点,M
2、为线段AF2的中点,求证:ATM=AFT。解析:()过 A、B的直线方程为 因为由题意得有惟一解,即有惟一解,所以故=0又因为e,即 , 所以 从而得故所求的椭圆方程为()由()得,所以 ,从而M(1+,0)由 ,解得 因此因为,又,得,因此,3、(2007年)如图,直线与椭圆交于两点,记的面积为(I)求在,的条件下,的最大值;(II)当,时,求直线的方程解析:(I)设点的坐标为,点的坐标为由,解得所以,当且仅当时,S取到最大值1()解:由得AB 又因为O到AB的距离所以代入并整理,得,解得,代入式检验,0,故直线AB的方程是 或或或4、(2008年)已知曲线C是到点P()和到直线距离相等的点
3、的轨迹。是过点Q(-1,0)的直线,M是C上(不在上)的动点;A、B在上,轴(如图)。 ()求曲线C的方程; ()求出直线的方程,使得为常数。解析:()设为上的点,则,到直线的距离为由题设得化简,得曲线的方程为()解法一:设,直线,则,从而ABOQyxlM在中,因为,所以 .,当时,从而所求直线方程为解法二:设,直线,则,从而过垂直于的直线ABOQyxlMHl1因为,所以,当时,从而所求直线方程为5、(2009年)已知椭圆:的右顶点为,过的焦点且垂直长轴的弦长为 (I)求椭圆的方程; (II)设点在抛物线:上,在点处的切线与交于点当线段的中点与的中点的横坐标相等时,求的最小值OxyAPMN解析
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 浙江 高考 历年 解析几何 理科 12
![提示](https://www.taowenge.com/images/bang_tan.gif)
限制150内