二次根式知识点归纳及题型总结.pdf
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_05.gif)
《二次根式知识点归纳及题型总结.pdf》由会员分享,可在线阅读,更多相关《二次根式知识点归纳及题型总结.pdf(3页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、二次根式知识点归纳和题型归类二次根式知识点归纳和题型归类一、知识框图一、知识框图二、知识要点梳理二、知识要点梳理知识点一、二次根式的主要性质:知识点一、二次根式的主要性质:1 1.;2 2.;3.3.;4.4.积的算术平方根的性质:;5.5.商的算术平方根的性质:.6.6.若,则.知识点二、二次根式的运算知识点二、二次根式的运算1 1二次根式的乘除运算二次根式的乘除运算(1)运算结果应满足以下两个要求:应为最简二次根式或有理式;分母中不含根号.(2)注意每一步运算的算理;2 2二次根式的加减运算二次根式的加减运算先化简,再运算,3 3二次根式的混合运算二次根式的混合运算(1)明确运算的顺序,即
2、先乘方、开方,再乘除,最后算加减,有括号先算括号里;(2)整式、分式中的运算律、运算法则及乘法公式在二次根式的混合运算中也同样适用.一一.利用二次根式的双重非负性来解题利用二次根式的双重非负性来解题(a 0(a0),即一个非负数的算术平方根是一个非负数。)1.下列各式中一定是二次根式的是()。A、3;B、x;C、x21;D、x12等式(x1)1x 成立的条件是_3当 x_时,二次根式2x3有意义取何值时,下列各式在实数范围内有意义。2(1)(2)5 x1(3)x 42x1(4)若x(x1)则 x 的取值范围是(5)若x3x3,则 x 的取值范围是。xx1,x1x16.若3m 1有意义,则 m
3、能取的最小整数值是;若20m是一个正整数,则正整数 m 的最小值是_7.当 x 为何整数时,10 x11有最小整数值,这个最小整数值为。8.8.若若2004a a2005 a,则,则a2004=_=_;若y x 3 3 x 4,则x y 29设设 mm、n n 满足满足n m29 9m22,则,则mn=。m3210.若三角形的三边 a、b、c 满足a 4a 4b3=0,则第三边 c 的取值范围是11.若|4x8|x ym 0,且y 0时,则()A、0 m 1 B、m 2C、m 2D、m 2二利用二次根式的性质利用二次根式的性质a2=|a|=a(a b)(即一个数的平方的算术平方根等于这个数的绝
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 二次 根式 知识点 归纳 题型 总结
![提示](https://www.taowenge.com/images/bang_tan.gif)
限制150内