初一上册数学期末必考知识点.docx
《初一上册数学期末必考知识点.docx》由会员分享,可在线阅读,更多相关《初一上册数学期末必考知识点.docx(15页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、文本为Word版本,下载可任意编辑初一上册数学期末必考知识点 学得越多,懂得越多,想得越多,领悟得就越多,就像滴水一样,一滴水或许很快就会被太阳蒸发,但如果滴水不停的滴,就会变成一个水沟,越来越多,越来越多本篇文章是为您整理的初一上册数学期末必考知识点,供大家借鉴。 1.初一上册数学期末必考知识点 角 1.角的定义:有公共端点的两条射线组成的图形叫角。这个公共端点是角的顶点,两条射线为角的两边。 2.角有以下的表示方法: (1)用三个大写字母及符号“”表示三个大写字母分别是顶点和两边上的任意点,顶点的字母必须写在中间。 (2)用一个大写字母表示这个字母就是顶点当有两个或两个以上的角是同一个顶点
2、时,不能用一个大写字母表示。 (3)用一个数字或一个希腊字母表示在角的内部靠近角的顶点处画一弧线,写上希腊字母或数字如图的两个角,分别记作、1。 3.以度、分、秒为单位的角的度量制,叫做角度制。角的度、分、秒是60进制的。1度=60分,1分=60秒,1周角=360度,1平角=180度。 4.角的平分线:一般地,从一个角的顶点出发,把这个角分成两个相等的角的射线,叫做这个角的平分线。 5.如果两个角的和等于90度(直角),就说这两个叫互为余角,即其中每一个角是另一个角的余角;如果两个角的和等于180度(平角),就说这两个叫互为补角,即其中每一个角是另一个角的补角。 6.同角(等角)的补角相等;同
3、角(等角)的余角相等。 2.初一上册数学期末必考知识点 图形初步认识 1.我们把实物中抽象的各种图形统称为几何图形。 2.有些几何图形(如长方体.正方体.圆柱.圆锥.球等)的各部分不都在同一平面内,它们是立体图形。 3.有些几何图形(如线段.角.三角形.长方形.圆等)的各部分都在同一平面内,它们是平面图形。 4.将由平面图形围成的立体图形表面适当剪开,可以展开成平面图形,这样的平面图形称为相应立体图形的展开图。 5.几何体简称为体。 6.包围着体的是面,面有平的面和曲的面两种。 7.面与面相交的地方形成线,线和线相交的地方是点。 8.点动成面,面动成线,线动成体。 9.经过探究可以得到一个基本
4、事实:经过两点有一条直线,并且只有一条直线。简述为:两点确定一条直线(公理)。 10.当两条不同的直线有一个公共点时,我们就称这两条直线相交,这个公共点叫做它们的交点。 11.点M把线段AB分成相等的两条线段AM和MB,点M叫做线段AB的中点。 12.经过比较,我们可以得到一个关于线段的基本事实:两点的所有连线中,线段最短。简单说成:两点之间,线段最短。(公理) 13.连接两点间的线段的长度,叫做这两点的距离。 整式的加减 1.都是数或字母的积的式子叫做单项式,单独的一个数或一个字母也是单项式。 2.单项式中的数字因数叫做这个单项式的系数。 3.一个单项式中,所有字母的指数的和叫做这个单项式的
5、次数。 4.几个单项的和叫做多项式,其中,每个单项式叫做多项式的项,不含字母的项叫做常数项。 5.多项式里次数项的次数,叫做这个多项式的次数。 6.把多项式中的同类项合并成一项,叫做合并同类项。 合并同类项后,所得项的系数是合并前各同类项的系数的和,且字母部分不变。 7.如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同。 8.如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反。 9.一般地,几个整式相加减,如果有括号就先去括号,然后再合并同类项。 3.初一上册数学期末必考知识点 多项式除以单项式 一、单项式 1、都是数字与字母的乘积的代数式叫做单项式。 2、单
6、项式的数字因数叫做单项式的系数。 3、单项式中所有字母的指数和叫做单项式的次数。 4、单独一个数或一个字母也是单项式。 5、只含有字母因式的单项式的系数是1或1。 6、单独的一个数字是单项式,它的系数是它本身。 7、单独的一个非零常数的次数是0。 8、单项式中只能含有乘法或乘方运算,而不能含有加、减等其他运算。 9、单项式的系数包括它前面的符号。 10、单项式的系数是带分数时,应化成假分数。 11、单项式的系数是1或1时,通常省略数字“1”。 12、单项式的次数仅与字母有关,与单项式的系数无关。 二、多项式 1、几个单项式的和叫做多项式。 2、多项式中的每一个单项式叫做多项式的项。 3、多项式
7、中不含字母的项叫做常数项。 4、一个多项式有几项,就叫做几项式。 5、多项式的每一项都包括项前面的符号。 6、多项式没有系数的概念,但有次数的概念。 7、多项式中次数的项的次数,叫做这个多项式的次数。 三、整式 1、单项式和多项式统称为整式。 2、单项式或多项式都是整式。 3、整式不一定是单项式。 4、整式不一定是多项式。 5、分母中含有字母的代数式不是整式;而是今后将要学习的分式。 四、整式的加减 1、整式加减的理论根据是:去括号法则,合并同类项法则,以及乘法分配率。 2、几个整式相加减,关键是正确地运用去括号法则,然后准确合并同类项。 3、几个整式相加减的一般步骤: (1)列出代数式:用括
8、号把每个整式括起来,再用加减号连接。 (2)按去括号法则去括号。 (3)合并同类项。 4、代数式求值的一般步骤: (1)代数式化简。 (2)代入计算 (3)对于某些特殊的代数式,可采用“整体代入”进行计算。 五、同底数幂的乘法 1、n个相同因式(或因数)a相乘,记作an,读作a的n次方(幂),其中a为底数,n为指数,an的结果叫做幂。 2、底数相同的幂叫做同底数幂。 3、同底数幂乘法的运算法则:同底数幂相乘,底数不变,指数相加。即:aman=am+n。 4、此法则也可以逆用,即:am+n=aman。 5、开始底数不相同的幂的乘法,如果可以化成底数相同的幂的乘法,先化成同底数幂再运用法则。 六、
9、幂的乘方 1、幂的乘方是指几个相同的幂相乘。(am)n表示n个am相乘。 2、幂的乘方运算法则:幂的乘方,底数不变,指数相乘。(am)n=amn。 3、此法则也可以逆用,即:amn=(am)n=(an)m。 七、积的乘方 1、积的乘方是指底数是乘积形式的乘方。 2、积的乘方运算法则:积的乘方,等于把积中的每个因式分别乘方,然后把所得的幂相乘。即(ab)n=anbn。 3、此法则也可以逆用,即:anbn=(ab)n。 八、三种“幂的运算法则”异同点 1、共同点: (1)法则中的底数不变,只对指数做运算。 (2)法则中的底数(不为零)和指数具有普遍性,即可以是数,也可以是式(单项式或多项式)。 (
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 初一上册数学期末必考知识点 初一 上册 数学 期末 必考 知识点
限制150内