数学人教版八年级上册边边边证明三角形全等.1全等三角形的判定(SSS)ppt课件.pptx
《数学人教版八年级上册边边边证明三角形全等.1全等三角形的判定(SSS)ppt课件.pptx》由会员分享,可在线阅读,更多相关《数学人教版八年级上册边边边证明三角形全等.1全等三角形的判定(SSS)ppt课件.pptx(50页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、ABC 1.什么叫全等三角形?什么叫全等三角形?能够重合的两个三角形叫能够重合的两个三角形叫 全等三角形全等三角形。2.全等三角形有什么全等三角形有什么性质?性质?全等三角形的对应边相等,对应角相等全等三角形的对应边相等,对应角相等 .已知已知 ,试找出其中相等的边与角,试找出其中相等的边与角 ABC即:三条边对应相等,三个角对应相等的两个三角形全等。六个条件,可得到什么结论?六个条件,可得到什么结论?与与 满足上述六个条件中的满足上述六个条件中的一部一部分分是否能保证是否能保证 与与 全等呢?全等呢?ABC一个条件可以一个条件可以吗?两个条件可以两个条件可以吗?一个条件可以一个条件可以吗?1
2、.有有一条一条边相等的两个三角形相等的两个三角形不一定全等不一定全等探究活动探究活动 课本课本62.有有一个角一个角相等的两个三角形相等的两个三角形不一定全等不一定全等结论:结论:有一个条件相等不能保证两个三角形全等有一个条件相等不能保证两个三角形全等.6cm300有两个条件对应相等不能保证三角形全等有两个条件对应相等不能保证三角形全等.60o300不一定全等不一定全等1.有有两个角两个角对应相等的两个三角形对应相等的两个三角形两个条件可以两个条件可以吗?3.有有一个角和一条边一个角和一条边对应相等的两个三角形对应相等的两个三角形2.有有两条边两条边对应相等的两个三角形对应相等的两个三角形4c
3、m6cm不一定全等不一定全等30060o4cm6cm不一定全等30o 6cm结论:结论:探究活动探究活动 课本课本6三个条件呢?三个条件呢?探究活动探究活动 1.三个角;三个角;2.三条边;三条边;3.两边一角;两边一角;4.两角一边。两角一边。如果给出如果给出三个三个条件画三角形,条件画三角形,你能说出有哪几种可能的情况?你能说出有哪几种可能的情况?结论结论:三个内角对应相等的三角形三个内角对应相等的三角形 不一定全等不一定全等。探究活动探究活动 1.有有三个角三个角对应相等的两个三角形对应相等的两个三角形60o30030060o90o90o三个条件呢?三个条件呢?三三边相等的两个三角形会全
4、等相等的两个三角形会全等吗?画法:画法:探究活动探究活动 你能得出什你能得出什么结论?么结论?课本课本6 三三边对应相等的两个三角形全等,相等的两个三角形全等,简写写为“边边边”或或“SSS”。用上面的结论可以判定两个三角形全等用上面的结论可以判定两个三角形全等判断两个三角形全等的推理过程,叫做判断两个三角形全等的推理过程,叫做证明证明三角形全等三角形全等ABCABC三边对应相等的两个三角形全等三边对应相等的两个三角形全等.(简写成简写成“边边边边边边”或或“SSS”)如何用符号语言来表达呢如何用符号语言来表达呢?结论结论课本课本7 A=_ B=_ C=_B ABC ADC(SSS)例例1 已
5、知:如图,已知:如图,AB=AD,BC=CD,求证求证:ABC ADCABCDACAC ()AB=AD ()BC=CD ()证明:证明:在在ABC和和ADC中中=已知已知已知已知 公共边公共边判断两个三角形全等的推理过程,叫做证明三角形全等。判断两个三角形全等的推理过程,叫做证明三角形全等。分析:分析:要证明要证明 ABC ADC,首先看这两个三角首先看这两个三角形的形的三条边三条边是否对应相等。是否对应相等。结论结论:从这题的证明中可以看出,证明是由题从这题的证明中可以看出,证明是由题设(已知)出发,经过一步步的推理,最后推设(已知)出发,经过一步步的推理,最后推出结论正确的过程。出结论正确
6、的过程。准备条件:准备条件:证全等时要用的间接条件要先证好;证全等时要用的间接条件要先证好;三角形全等书写三步骤:三角形全等书写三步骤:写出在哪两个三角形中写出在哪两个三角形中摆出三个条件用大括号括起来摆出三个条件用大括号括起来写出全等结论写出全等结论证明的书写步骤:证明的书写步骤:例例2 如图,如图,ABCABC是一个钢架,是一个钢架,AB=ACAB=AC,AD AD是连接点是连接点A A与与BCBC中点中点D D的支架的支架.求证:求证:ABDACD.ABDACD.ABCDABCD.CDBD BCD 的中点,是证明:QACDABD 中,和在DDADADCDBDACAB ,.SSSACD A
7、BD )(DD(1)(1)(2)BAD=CAD.(2)BAD=CAD.(2)BAD=CAD.(2)BAD=CAD.(2)由()由(1)得)得ABDACD,BAD=BAD=CAD.CAD.已知已知AOBAOB(如图),(如图),用直尺和圆规用直尺和圆规作作A AO OB B,使使A AO OB B=AOBAOB。OOA AB BOOAABB课课 本本 P7-8 工人师傅常用角尺平分一个任意角工人师傅常用角尺平分一个任意角.做法如下:如图,做法如下:如图,AOB是一个任意角,在边是一个任意角,在边OA,OB上分别取上分别取OM=ON,移动,移动角尺,使角尺两边相同的刻度分别与角尺,使角尺两边相同的
8、刻度分别与M,N重合重合.过角尺顶点过角尺顶点C的射线的射线OC便是便是AOB的平分线的平分线.为什么?为什么?课课 本本 P8OMABNC 例例3、已知已知BACBAC(如图),(如图),用直尺和圆规用直尺和圆规作作BACBAC的平分线的平分线AD,并说出该作法正,并说出该作法正确的理由。确的理由。ACB 我们曾经做过这样的实验:将我们曾经做过这样的实验:将三根木条钉成一个三角形木架,这三根木条钉成一个三角形木架,这个三角形木架的形状和大小就不变个三角形木架的形状和大小就不变了,你现在能解释其中的道理吗?了,你现在能解释其中的道理吗?思考思考:你能用三角形的稳定性你能用三角形的稳定性来说明来
9、说明SSS公理吗公理吗?三角形的三边长度固定,这个三三角形的三边长度固定,这个三三角形的三边长度固定,这个三三角形的三边长度固定,这个三角形的形状大小就完全确定,这角形的形状大小就完全确定,这角形的形状大小就完全确定,这角形的形状大小就完全确定,这个性质叫个性质叫个性质叫个性质叫三角形的稳定性三角形的稳定性三角形的稳定性三角形的稳定性。三角形的稳定性举例三角形的稳定性举例 如图,如图,AB=AC,AE=AD,BD=CE,求证:求证:AEB ADC。证明:证明:BD=CE BD-ED=CE-ED,即即BE=CD。CABDE在在AEB和和ADC中,中,AB=ACAE=ADBE=CD AEB ADC
10、 (sss)CBDAFEDB思思考考 已知已知AC=FE,BC=DE,点,点A、D、B、F在一条直线上,在一条直线上,AD=FB.要用要用“边边边边边边”证明证明ABC FDE,除了已知中的,除了已知中的AC=FE,BC=DE以以外,还应该有什么条件?怎样才能得到这个条件?外,还应该有什么条件?怎样才能得到这个条件?解:解:要证明要证明ABC FDE,还应该有还应该有AB=DF这个条件这个条件 DB是是AB与与DF的公共部分,的公共部分,且且AD=BF AD+DB=BF+DB 即即 AB=DF思思考考FDBABC 中,中,和和在在D DD DFBACDBBCFDAB ,.SSSFDB ABC
11、)(D DD DCBDAFEDB 已知已知AC=FE,BC=DE,点,点A、D、B、F在一条直线上,在一条直线上,AD=FB.要用要用“边边边边边边”证明证明ABC FDE,除了已知中的,除了已知中的AC=FE,BC=DE以以外,还应该有什么条件?怎样才能得到这个条件?外,还应该有什么条件?怎样才能得到这个条件?练习练习1:如图,如图,ABAC,BDCD,BHCH,图中,图中有几组全等的三角形?它们全等的条件是什么?有几组全等的三角形?它们全等的条件是什么?HDCBA解:有三组。解:有三组。在在ABH和和ACH中中,AB=AC,BH=CH,AH=AH,ABHACH(SSS););BD=CD,B
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 学人 教版八 年级 上册 边边边 证明 三角形 全等 判定 SSS ppt 课件
限制150内