2023年高考数学压轴题圆锥曲线专题第09讲:斜率问题一含解析.docx
《2023年高考数学压轴题圆锥曲线专题第09讲:斜率问题一含解析.docx》由会员分享,可在线阅读,更多相关《2023年高考数学压轴题圆锥曲线专题第09讲:斜率问题一含解析.docx(46页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2023年高考数学压轴题圆锥曲线专题第09讲:斜率问题一(解析版)第九讲:斜率问题(一)【学习目标】基础目标:掌握椭圆,双曲线,抛物线的简单性质;应用目标:掌握直线与椭圆,双曲线,抛物线的位置关系的判断,斜率的求解;拓展目标:能够熟练应用点差法推导中点弦公式,并灵活应用中点弦和相关第三定义.素养目标:通过数形结合,转化与化归等思想方法,培养独立思考和逻辑分析能力,提升学生的数学运算和数学抽象的核心素养.【基础知识】1、直线与圆锥曲线的位置关系设直线,圆锥曲线,把二者方程联立得到方程组,消去得到一个关于的方程.(1)当时,方程有两个不同的实数解,即直线与圆锥曲线有两个交点;方程有两个相同的实数解
2、,即直线与圆锥曲线有一个交点;方程无实数解,即直线与圆锥曲线无交点.(2)当时,方程为一次方程,若,方程有一个解,此时直线与圆锥曲线有一个交点;若,方程无解,此时直线与圆锥曲线没有交点.2、圆锥曲线的中点弦问题(1)为椭圆的弦,弦中点M(x0,y0),则所在直线的斜率为,弦的斜率与弦中点M和椭圆中心O的连线的斜率之积为定值.(2)AB为双曲线的弦,弦中点M(x0,y0),则AB所在直线的斜率为,弦AB的斜率与弦中点M和双曲线中心O的连线的斜率之积为定值.(3)在抛物线中,以M(x0,y0) 为中点的弦所在直线的斜率.【考点剖析】考点一:位置关系(交点个数)例1已知抛物线的焦点到准线的距离为,过
3、点 的直线与抛物线只有一个公共点.(1)求抛物线的方程;(2)求直线的方程.变式训练1:已知O,F分别是抛物线的顶点和焦点,动点M与点O的距离是它与点F的距离的一半(1)求动点M的轨迹;(2)若过点的直线l与动点M的轨迹有且只有一个交点,求直线l的方程变式训练2:已知双曲线C:的焦距为4,且过点.(1)求双曲线方程;(2)若直线与双曲线C有且只有一个公共点,求实数的值.变式训练3:在平面直角坐标系中,已知点到两点的距离之和等于,设点的轨迹为曲线.(1)求曲线的方程.(2)若直线与曲线有公共点,求实数的取值范围.考点二:中点弦公式(椭圆:点差法)例1已知椭圆的离心率为,点在上.(1)求的方程;(
4、2)直线不过原点且不平行于坐标轴,与有两个交点,线段的中点为.证明:直线的斜率与直线的斜率的乘积为定值.变式训练1:已知动点与平面上点,的距离之和等于.(1)求动点的轨迹方程;(2)若经过点的直线与曲线交于,两点,且点为的中点,求直线的方程.变式训练2:已知椭圆E:的左,右焦点分别为,点在E上,且(1)求E的标准方程;(2)若直线l与E交于A,B两点,且AB中点为,求直线l的方程变式训练3:已知椭圆的左、右焦点分别为,过且与轴垂直的直线交椭圆于点,直线与轴的交点为(1)求椭圆的离心率;(2)过点且斜率不为0的直线交椭圆于、点,线段的中点为点,求证:直线的斜率与直线的斜率的乘积为定值考点三:中点
5、弦公式(抛物线:点差法)例1已知抛物线的焦点为F,第四象限的一点在C上,且.(1)求C的方程和m的值;(2)若直线l交C于A,B两点,且线段AB中点的坐标为,求直线l的方程及线段AB的长.变式训练1:已知是抛物线的焦点,直线交拋物线于、两点.(1)若直线过点且,求;(2)若平分线段,求直线的方程.变式训练2:已知抛物线上的点到其焦点F的距离为5.(1)求C的方程;(2)过点的直线l交C于A,B两点,且N为线段的中点,求直线l的方程.考点四:中点弦公式(双曲线:点差法)例1已知双曲线的一条渐近线方程为,一个焦点到该渐近线的距离为1.(1)求的方程;(2)经过点的直线交于两点,且为线段的中点,求的
6、方程.变式训练1:已知双曲线C的渐近线方程为,且是双曲线上一点.(1)求双曲线C的标准方程及离心率;(2)过点的直线与双曲线C交于不同的两点AB,且线段AB恰好被点M平分,求直线AB的方程.变式训练2:已知双曲线的中心在原点,焦点在轴上,离心率,焦距为.(1)求该双曲线方程.(2)是否定存在过点的直线与该双曲线交于、两点,且点是线段的中点若存在,请求出直线的方程,若不存在,说明理由.变式训练3:已知双曲线:(,)与有相同的渐近线,且经过点.(1)求双曲线的方程;(2)已知直线与双曲线交于不同的两点,且线段的中点在圆上,求实数的值.考点五:椭圆的第三定义(推导公式)例1已知椭圆C:()的离心率为
7、,并且经过点,(1)求椭圆C的方程;(2)设点关于坐标原点的对称点为,点为椭圆C上任意一点,直线的斜率分别为,求证:为定值变式训练1:已知椭圆的离心率为,上顶点,M、N为椭圆上异于点P且关于原点对称的两点(1)求椭圆C的标准方程;(2)求证为定值变式训练2:已知椭圆:的离心率为,其右焦点到直线的距离为(1)求椭圆的标准方程;(2)直线交椭圆于,两点,椭圆右顶点为,求证:直线,的斜率乘积为定值,并求出该定值变式训练3:已知O为坐标原点,双曲线C:(,)的离心率为,点P在双曲线C上,点,分别为双曲线C的左右焦点,.(1)求双曲线C的标准方程;(2)已知点,设直线PA,PB的斜率分别为,.证明:为定
8、值.【当堂小结】1、知识清单:(1)直线与椭圆,双曲线,抛物线的位置关系;(2)圆锥曲线的中点弦问题;2、易错点:点差法的计算;3、考查方法:数形结合思想,数与形的转化;4、核心素养:数学运算,数学抽象.【过关检测】1已知曲线上任一点与点的距离与它到直线的距离相等(1)求曲线的方程;(2)求过定点,且与曲线只有一个公共点的直线的方程2已知椭圆:的左、右焦点分别为,点E在椭圆C上,且,.(1)求椭圆C的方程:(2)直线l过点,交椭圆于点A,B,且点P恰为线段AB的中点,求直线l的方程.3已知的周长为且点的坐标分别是,动点的轨迹为曲线.(1)求曲线的方程;(2)直线过点,交曲线于两点,且为的中点,
9、求直线的方程.4已知椭圆C的焦点为,过的直线与椭圆C交于A,B两点.若的周长为.(1)求椭圆C的方程;(2)椭圆中以为中点的弦所在直线方程.5双曲线的离心率为2,经过C的焦点垂直于x轴的直线被C所截得的弦长为12.(1)求C的方程;(2)设A,B是C上两点,线段AB的中点为,求直线AB的方程.6已知双曲线的渐近线方程为,焦点坐标为.(1)求C的方程;(2)经过点的直线l交C于A,B两点,且M为线段AB的中点,求l的方程.7双曲线 ,离心率 ,虚轴长为 2 (1)求双曲线的标准方程;(2)经过点的直线与双曲线相交于两点,且为的中点,求直线的方程8已知椭圆的离心率为,上顶点,M、N为椭圆上异于点P
10、且关于原点对称的两点(1)求椭圆C的标准方程;(2)求证为定值9在平面直角坐标系中,动点到点的距离和它到直线的距离之比为.动点的轨迹为曲线.(1)求曲线的方程,并说明曲线是什么图形;(2)已知曲线与轴的交点分别为,点是曲线上异于的一点,直线的斜率为,直线的斜率为,求证:为定值.10已知椭圆过点,其右焦点为.(1)求椭圆的方程;(2)设为椭圆上一动点(不在轴上),为中点,过原点作的平行线,与直线交于点. 问:直线与斜率的乘积是否为定值?若为定值,求出该值;若不为定值,请说明理由.第九讲:斜率问题(一)【学习目标】基础目标:掌握椭圆,双曲线,抛物线的简单性质;应用目标:掌握直线与椭圆,双曲线,抛物
11、线的位置关系的判断,斜率的求解;拓展目标:能够熟练应用点差法推导中点弦公式,并灵活应用中点弦和相关第三定义.素养目标:通过数形结合,转化与化归等思想方法,培养独立思考和逻辑分析能力,提升学生的数学运算和数学抽象的核心素养.【基础知识】1、直线与圆锥曲线的位置关系设直线,圆锥曲线,把二者方程联立得到方程组,消去得到一个关于的方程.(1)当时,方程有两个不同的实数解,即直线与圆锥曲线有两个交点;方程有两个相同的实数解,即直线与圆锥曲线有一个交点;方程无实数解,即直线与圆锥曲线无交点.(2)当时,方程为一次方程,若,方程有一个解,此时直线与圆锥曲线有一个交点;若,方程无解,此时直线与圆锥曲线没有交点
12、.2、圆锥曲线的中点弦问题(1)为椭圆的弦,弦中点M(x0,y0),则所在直线的斜率为,弦的斜率与弦中点M和椭圆中心O的连线的斜率之积为定值.(2)AB为双曲线的弦,弦中点M(x0,y0),则AB所在直线的斜率为,弦AB的斜率与弦中点M和双曲线中心O的连线的斜率之积为定值.(3)在抛物线中,以M(x0,y0) 为中点的弦所在直线的斜率.【考点剖析】考点一:位置关系(交点个数)例1已知抛物线的焦点到准线的距离为,过点 的直线与抛物线只有一个公共点.(1)求抛物线的方程;(2)求直线的方程.【答案】(1);(2)或或.解析:(1)因抛物线的焦点到准线的距离为,于是得,所以抛物线的方程为.(2)当直
13、线的斜率存在时,设直线为,由消去y并整理得:,当时,点是直线与抛物线唯一公共点,因此,直线方程为,当时,此时直线与抛物线相切,直线方程为,当直线的斜率不存在时,y轴与抛物线有唯一公共点,直线方程为,所以直线方程为为或或.变式训练1:已知O,F分别是抛物线的顶点和焦点,动点M与点O的距离是它与点F的距离的一半(1)求动点M的轨迹;(2)若过点的直线l与动点M的轨迹有且只有一个交点,求直线l的方程【答案】(1)点M的轨迹是以为圆心,半径为2的圆;(2)或.解析:(1)设,依题意,由得:,化简得,即,所以,点M的轨迹是以为圆心,半径为2的圆.(2)当直线l的斜率存在时,设其方程为,即,因直线l与动点
14、M的轨迹有且只有一个交点,由(1)知,即直线l与圆N相切,由圆心到直线l的距离等于半径2得:,解得,直线l的方程为,当直线l的斜率不存在时,其方程为,显然与圆N相切,所以直线l的方程为或.变式训练2:已知双曲线C:的焦距为4,且过点.(1)求双曲线方程;(2)若直线与双曲线C有且只有一个公共点,求实数的值.【答案】(1);(2),解析:(1)由题意可知双曲线的焦点为和,根据定义有,又,所以,所求双曲线的方程为(2)因为双曲线的方程为,所以渐近线方程为;由,消去整理得当即时,此时直线与双曲线的渐近线平行,此时直线与双曲线相交于一点,符合题意; 当即时,由,解得,此时直线双曲线相切于一个公共点,符
15、合题意 综上所述:符合题意的的所有取值为,变式训练3:在平面直角坐标系中,已知点到两点的距离之和等于,设点的轨迹为曲线.(1)求曲线的方程.(2)若直线与曲线有公共点,求实数的取值范围.【答案】(1);(2).解析:(1)由己知得由椭圆定义可知,轨迹是以,为焦点,焦距长,长轴长的椭圆.所以,所以曲线的方程是.(2)由得.,因为直线与曲线有公共点,所以,即,解得,或.故实数的取值范围是.考点二:中点弦公式(椭圆:点差法)例1已知椭圆的离心率为,点在上.(1)求的方程;(2)直线不过原点且不平行于坐标轴,与有两个交点,线段的中点为.证明:直线的斜率与直线的斜率的乘积为定值.【答案】(1)(2).解
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2023 年高 数学 压轴 圆锥曲线 专题 09 斜率 问题 解析
限制150内