彩色电视的基本原理.ppt
《彩色电视的基本原理.ppt》由会员分享,可在线阅读,更多相关《彩色电视的基本原理.ppt(142页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、第第3章章 彩色电视的基本原理彩色电视的基本原理 3.1 色度学的基本知识色度学的基本知识3.2 彩色图像的分解与重现彩色图像的分解与重现 3.3 兼容制彩色电视制式兼容制彩色电视制式3.4 PAL制彩色全电视信号制彩色全电视信号3.5 彩色电视接收机概述彩色电视接收机概述3.6 彩色显像管彩色显像管3.1 色度学的基本知识色度学的基本知识3.1.1光与色光是一种以电磁波辐射形式存在的物质。电磁波的频谱范围很广,包括无线电波、红外线、可见光波、紫外线、X射线、宇宙射线等。可见光随着波长由长到短的变化,对人眼中引起的颜色感觉是不一样的,呈现的色光依次为红、橙、黄、绿、青、蓝、紫等。以后用“色调”
2、这一术语来表示颜色的类别。电磁波波谱及可见光的波长如图3-1所示。图3-1电磁波的波谱3.1.2彩色的三要素任意一种彩色光,均可用亮度、色调和色饱和度来表示,它们又称做彩色三要素。亮度是指彩色光对人眼所引起的明亮程度感觉。当光波的能量增强时,亮度就增加;反之亦然。此外,亮度还与人眼的光谱响应特性有关,不同的彩色光,即使强度相同,当分别照射同一物体时也会对人眼产生不同的亮度感觉。实验表明:人眼对550nm的光波亮度感觉最灵敏。色调是指光的颜色种类。例如,红、橙、黄、绿、青、蓝、紫分别表示不同的色调,色调是彩色最基本的特性。色饱和度是指彩色的纯度,即颜色掺入白光的程度,或指颜色的深浅程度。某彩色掺
3、入的白光越多,其色饱和度就越低;掺入的白光越少,其色饱和度就越高。不掺入白光,即白光为零,则其色饱和度为100%;全为白光,则其色饱和度为零。通常把色调与色饱和度合称为色度。3.1.3三基色原理根据人眼的彩色视觉特性,在彩色重现过程中,并不要求恢复原景物反射光的全部光谱成分,而重要的是应获得与原景象相同的彩色感觉。我们知道,不同波长的光会引起人眼不同的彩色感觉,同一波长的光引起的人眼彩色感觉是一定的。那么是不是人眼对某一色调的感觉就只能对应一种波长的单色光呢?实践表明,几种不同波长的单色光混合在一起,也可以引起人眼产生与另外一种单色光相同的彩色感觉。实践证明,自然界可见到的绝大部分彩色,都可以
4、由几种不同波长(颜色)的单色光相混合来等效,这一现象叫做混色效应。经进一步研究,人们终于得到了一个重要的原理三基色原理。三基色原理的主要内容是:(1)自然界中的绝大部分彩色,都可以由三种基色按一定比例混合得到;反之,任意一种彩色均可以被分解为三种基色。(2)作为基色的三种彩色,要相互独立,即其中任何一种基色都不能由另外两种基色混合来产生。(3)由三基色混合而得到的彩色光的亮度等于参与混合的各基色的亮度之和。(4)三基色的比例决定了混合色的色调和色饱合度。彩色电视的实现就是基于此三基色原理的。在彩色电视中,通常选用红(用字母R表示)、绿(用字母G表示)、蓝(用字母B表示)作为三种基色光。三基色原
5、理为彩色电视技术奠定了理论基础,极大地简化了用电信号来传送彩色图像的技术问题。彩色混色法有两种:一种是彩色光的混色,这种方式是用加法混色。例如彩色电视中,利用三基色原理将彩色分解和重现,最终使三基色光同时作用于人眼中,视觉相加混合获得不同的彩色感觉。另一种是彩色颜料的混色,是用减法混色,如绘画等,它们的混色规律是不同的。这里只讨论彩色电视所用的相加混色法,其混色规律如图3-2所示。图3-2混色图(a)相加混色图;(b)彩色三角形从图3-2(a)得知:红光绿光黄光红光蓝光紫光绿光蓝光青光红光绿光蓝光白光以上均指各种光等量相加,若改变它们间的混合比例,则可以得到各种颜色的光。为了实现相加混色,除了
6、将三种不同亮度的基色光同时投射到一个全反射表面上从而合成不同的彩色光以外,还可以利用人眼的视觉特性用下列方法进行混色:(1)时间混色法:(2)空间混色法:彩色三角形是一等边三角形,三个顶点放置三基色,其余各混色可相应确定,如图3-2(b)所示,对该图的说明如下:(1)每条边上各点代表的颜色,是相应的两个基色按不同比例混合的混合色。(2)彩色三角形的重心是白色,它是等量的三基色的混合色。(3)每根中线两端对应的彩色互为补色,由于中线过重心,说明两补色间可混合成白色。(4)每边的彩色为纯色,色饱和度为100%。3.1.4亮度方程显像三基色要混合成白光,所需光通量之比是由所选用的标准白光和所选三基色
7、的不同而决定的。实验表明,目前NTSC制彩色电视中,由三基色合成的彩色光的亮度符合下面的关系:Y=0.299R+0.587G+0.114B(3-1)上式为彩色电视中常用的亮度方程,该式定量地说明了由三基色合成彩色光的亮度关系。也是在彩色电视技术中,无论是彩色重现,还是彩色分解都必须遵守的一个重要关系式。由于彩色电视制式不同,所规定的标准白光和选择的显像三基色荧光粉是不一样的。因此,由三基色合成的彩色光的亮度方程也不一样。例如,PAL制的亮度方程为Y=0.222R+0.707G+0.071B但因NTSC制使用较早,所以,PAL制并没有采用它本身的亮度方程,而是沿用了NTSC制的亮度方程。实践表明
8、,由此引起的图像亮度误差很小,完全能满足人眼视觉对亮度的要求。亮度方程通常近似写成:Y=0.30R+0.59G+0.11B(3-2)在亮度方程中,R、G、B前面的系数0.30、0.59、0.11分别代表R、G、B三种基色对亮度所起的作用,称为可见度系数。例如,在一个单位亮度的白光当中,红基色对白光亮度的贡献为30%,绿基色对白光亮度的作用为59%,蓝基色对白光亮度的贡献为11%。当R=G=B=1时,合成的亮度为白色光;当R=G=B=01之间时,则为灰色光;当R=G=B=0时,为黑色光;当R、G、B取不同的值时,就可以配出各种不同色调和不同饱和度的颜色。在彩色电视信号传输过程中,亮度信号和三基色
9、信号是以电压的形式来代表的,因此,亮度方程可以改写成电压的形式,即EY0.30ER+0.59EG+0.11EB这里,EY、ER、EG、EB各代表亮度信号、红基色信号、绿基色信号和蓝基色信号的电压,且分别独立。已知其中任意三种,就可通过加、减法矩阵电路来合成第四种。在后面的讨论中,为了书写方便,仍把以上四种信号电压EY、ER、EG、EB分别以Y、R、G、B来表示。3.2 彩色图像的分解与重现彩色图像的分解与重现 3.2.1彩色图像的分解电视图像是通过摄像管把图像的光信号变成电信号的。但由于一幅图像的细节变化很多,因此不能将整幅图像直接变成电信号,而是先将一幅彩色平面图像分解成许许多多彩色的像素,
10、每一像素均可用亮度、色调和色饱和度这三个要素来表征;再将每一像素顺序转变成电信号。对于活动图像而言,每一像素的三要素都是时间的函数。根据三基色原理,首先,用分色系统把彩色图像分解成红、绿、蓝三幅基色光,同时送到对应的红、绿、蓝摄像管的光敏靶上,三基色摄像管在扫描电路的作用下进行光电转换,然后进行预失真校正,以补偿光电转换系统的非线性。经过光电转换,三基色光就变成了三个电信号ER、EG、GB。这样就完成了图像的分解,如图3-3(a)所示。图3-3彩色电视传送的基本过程3.2.2彩色图像的重现在发送端,用摄像管取得了代表红、绿、蓝三基色的电信号,相应地,在接收端就可以把这三个基色电信号再转换成按比
11、例混合的彩色光,这样就正确地重现了景物的彩色图像。其具体工作过程如下:在接收端,见图3-3,经过传输通道,图像信号又被解码器分解为三个基色信号去控制彩色显像管的三条电子束。在彩色显像管荧光屏上涂敷着按一定规律紧密排列的红、绿、蓝三色荧光粉,显像管的三条电子束在扫描过程中各自轰击相应的荧光粉。3.3 兼容制彩色电视制式兼容制彩色电视制式3.3.1色度信号的编码传输1.色度信号的编码1)亮度信号与色度信号在兼容制彩色电视中,为了做到彩色、黑白相互兼容,重要条件之一就是要求彩色全电视信号和黑白全电视信号一样,也只占有6MHz的带宽。但是彩色图像经电视摄像机就形成了R、G、B三个基色信号,且每一基色信
12、号的带宽都与黑白图像信号的带宽相同,则三个基色占用的频带宽度总和就为18MHz,显然无法兼容传输。因此,彩色电视一般不直接传送这三个基色信号,而必须先对它们进行一定的编码。为了实现兼容,彩色电视编码最好含有两类信号:一种是代表图像明暗程度的亮度信号,另一种是代表图像彩色的色度信号。黑白电视接收机只需接收其中的亮度信号,就能直接收看到彩色电视节目,只不过显示的图像是黑白的;而彩色电视接收机就必须同时接收亮度信号和色度信号,通过解码器处理后,获得R、G、B三基色信号,最后送至彩色显像管重现出彩色图像。由亮度方程Y=0.3R+0.59G+0.11B可知,亮度信号可由R、G、B三基色信号合成。色度信号
13、虽有R、G、B三种,但根据亮度方程,在Y、R、G、B这四个物理量中,只有三个量是独立的。因此,作为传送彩色信息的色度信号只需选择两种基色信号就可以了。例如,可选用Y作亮度信号,选用R、B作色度信号,而G可以通过亮度方程求得。但这样做有个很大的缺点,即亮度信号Y已经代表了被传送彩色光的全部亮度,而R、B本身也还含有亮度成分,这显然是多余的,且在传输过程中易干扰亮度信号Y。为了克服这一缺点,彩色电视系统一般不选用基色本身作为色度信号,而选用的是色差信号。2)色差信号用基色信号减去亮度信号就得到色差信号。例如R-Y、B-Y、G-Y就是三种基色信号分别减去亮度信号Y而形成的,它们分别叫做红色差信号、绿
14、色差信号和蓝色差信号。由亮度方程(3-2)可得出三种色差信号的幅值:R-Y=R-(0.3R+0.59G+0.11B)=0.7R-0.59G-0.11B(3-3)B-Y=B-(0.3R+0.59G+0.11B)=-0.3R-0.59G+0.89B (3-4)G-Y=G-(0.3R+0.59G+0.11B)=-0.3R+0.41G-0.11B(3-5)由于G-Y信号幅值较小,对改善信噪比不利,并且G-Y又可由R-Y和B-Y通过简单的电阻矩阵合成产生,所以电视系统通常只传送Y、RY和B-Y这三种信号,而不传送G-Y信号,其中,Y仅代表亮度信息,而R-Y,B-Y代表色度信息。显然,这给兼容制电视系统提
15、供了方便与可能。图3-4给出了由R、G、B这三种基色信号通过编码合成的亮度信号Y与色差信号R-Y、B-Y的示意图。图3-4由R、G、B合成亮度信号Y与色差信号R-Y、B-Y的示意图3)频带压缩选用亮度信号Y和两色差信号R-Y、B-Y作为彩色电视信号传送,如果不加任何限制和处理的话,则彩色电视信号总的频带依然过宽,技术上还是难以实现,所以必须压缩彩色电视信号的频带宽度。彩色电视的图像清晰度是由亮度信号的带宽来保证的,且为了达到兼容,此亮度信号 必 须 与 黑 白 电 视 信 号 保 持 一 致 的 带 宽(即 06MHz),所以彩色电视信号中的亮度信号不能压缩,必须保持原有的6MHz带宽。根据人
16、眼对彩色细节的分辨能力比对亮度细节的分辨能力低得多这一特点,可将彩色信号的频带加以压缩,不必传送色度信号的高频分量。色度信号的高频分量可由亮度信号来代替,重现的彩色图像效果能够满足人眼的视觉要求。我国彩色电视系统在传送彩色图像时规定:将色度信号带宽由06MHz压缩到01.3MHz。2.传送色差信号的优点1)兼容效果好当选用Y、R-Y、B-Y三种信号时,Y仅代表被传送景物的亮度,而不含色度。而且,当所传送的图像为黑白图片时,色差信号均为零,因为任何黑白图片仅有亮度明暗的层次变化,因此它们的三基色信号总是相等的。例如,传送一灰色时,其三基色信号为R=G=B=0.4V,它们合成的亮度信号Y=0.4V
17、,所以色差信号R-Y,B-Y也为零。因此,色差信号只表示色度不表示亮度。而且三色差信号对亮度的贡献为零。这个道理不难证明,只要将式(3-2)的左边项移到右边,并加以整理便可以得到:0=0.3(R-Y)+0.59(G-Y)+0.11(B-Y)(3-6)2)能够实现恒定亮度原理所谓恒定亮度原理,是指被摄景物的亮度,在传输系统是线性的前提下均应保持恒定,即与色差信号失真与否无关,只与亮度信号本身的大小有关。下面举一例子来说明:假设某一时刻为一种偏紫的红色,其三基色信号为R=0.7V,G=0.4V,B=0.5V,由式(3-2),合成的Y=0.5V,根据色差定义,可用矩阵电路合成得到红色差信号和蓝色差信
18、号为:R-Y=0.7-0.5=0.2VB-Y=0.5-0.5=0V如果我们选用Y、B-Y、B-Y三种独立信号代表彩色信息,并将它们送至接收端,再利用矩阵电路同样可以将以上三信号相加获得R、B基色信号为0.7V、0.5V,同时,也可按式(3-6)合成绿色差信号:G-Y=-0.51(R-Y)-0.19(B-Y)=-0.11V然后再与亮度信号Y相加得到绿基色信号为0.39V,所恢复的三基色信号重现的亮度仍是0.5V。在传输过程中,假若Y信号无失真仍为0.5,而色差信号受干扰,R-Y由0.2V变为0.3V,B-Y由0V变为0.2V,则它们合成的G-Y=0.510.3-0.190.2=-0.191V,在
19、接收端已失真的色差信号与未失真的亮度信号合成后形成的三基色信号为:R=(R-Y)+Y=0.3+0.5=0.8VG=(G-Y)+Y=-0.191V+0.5=0.309VB=0.2+0.5=0.7VY=0.30.8+0.590.309+0.110.7=0.5V显然,色调有失真,红色变得更加偏紫了,但它们合成的亮度信号Y仍然是0.5V,即此时所显示的亮度仍然与失真前的相同。这就进一步说明色度通道的杂波干扰不影响图像亮度,使图像的质量得到了保证。3)有利于高频混合由于传送亮度信号占有全部视频带宽06MHz,而传送色度信号只利用较窄的频带01.3MHz。因此,电视接收机所恢复的三个基色信号就只包含较低的
20、的频率成分,反映在画面上,只表示大面积的彩色轮廓;而图像彩色的细节,即高频成分则由亮度信号来补充。这就是说,由亮度信号显示出一幅高清晰度的黑白图像,再由色度信号在这个黑白图像上进行大面积的低清晰度着色。此时人眼感觉到的就是一幅高质量的彩色图像画面。这就是所谓的大面积着色原理,又叫做高频混合原理。选用色差信号是有利于高频混合的。为了在接收端能够得到带宽为06MHz的三个基色信号。只要将01.3MHz窄带的色差信号混入一个06MHz全带宽的亮度信号中,就可以达到混合高频的目的。用亮度信号中的高频分量代替基色信号中未被传送的高频分量可用公式表示如下:(R-Y)01.3MHz+Y06MHz=R01.3
21、MHz+Y1.36MHz(3-7)(G-Y)01.3MHz+Y06MHz=G01.3MHz+Y1.36MHz(3-8)(B-Y)01.3MHz+Y06MHz=B01.3MHz+Y1.36MHz(3-9)3.3.2频谱间置原理1.频谱间置1)周期矩形脉冲波信号的频谱分析所谓频谱,是指信号中各种频率成分正弦波的幅度与其频率之间的关系。这里先分析一个周期为T的矩形脉冲波信号的频谱。图3-5(a)为一周期矩形脉冲波信号,按傅里叶级数展开的表达式为其中,=2/T。这表明:周期矩形脉冲波信号是由1,3,5,等奇次谐波组成的,且随着谐波次数的增高,幅度是逐渐减少的。图3-5(b)是周期矩形脉冲波信号的频谱,
22、这是一个由分离的谱线组成的频谱。事实上,所有周期信号的频谱都是分离谱或离散谱,而所有非周期信号的频谱都是连续谱。图3-5周期矩形脉冲波及其频谱(a)周期矩形脉冲波波形;(b)周期矩形脉冲波频谱2)亮度信号的频谱分析亮度信号本来是非周期性的,但由于电视图像信号采用了周期性扫描,使得视频信号具有一定的周期性。下面分析几种简单静止图像的对应信号波形及其频谱,以便找出一般图像信号的频谱规律。图3-6(a)所示的是一幅亮度在垂直方向突变(上半部黑、下半部白)的简单图像,则其对应的图像信号为E(t),是以场为周期的矩形脉冲波(图中画的是负极性图像信号的波形,并忽略行、场逆程的间隙),其频谱|A(f)|是以
23、场频fV为间隔的离散谱。图3-6简单图像信号波形和频谱图3-6(b)所示的是一幅亮度在水平方向突变(左半部黑、右半部白)的简单图像,则其对应的图像信号为E(t),是以行为周期的矩形脉冲波,其频谱|A(f)|是以行频fH为间隔的离散谱。图3-6(c)所示的是一幅既在水平方向,又在垂直方向有变化的静止图像,则其对应的图像信号为E(t),它可以看做是以场频信号对行频信号实行了幅度调制的波形,属于一脉冲调幅波。这种调幅波的载频为行频fH及其奇次谐波;而调制信号的频率则为场频fV及其奇次谐波。因此,其频谱|A(f)|是以行频fH及其奇次谐波为主谱线、其两侧出现以场频fV为间隔的fHnfV,3fHnfV,
24、5fHnf V,mfHnfV的双重离散谱(其中m、n均为奇数)。从图3-6(c)还可以看出:随着谐波频率的升高,其幅值越来越小,即能量越来越小。这种情况可用图3-7画出的活动图像信号的频谱来表示。这些谱线群也可用mfHnfV表示,这里m和n为包括零在内的正整数。图3-7活动图像信号的频谱由图3-7可知,各主谱线族间存在很大空隙,间隔为fH=15.625kHz。研究表明:由于图像在垂直方向变化较慢,因此,主谱线两侧的边频数n一般不超过20,如以n20,fV=50Hz来 计 算,则 每 组 谱 线 所 占 频 宽 约 为2f=22050=2kHz,其 空 隙 达 主 谱 线 间 距 的(15625
25、-2000)/15625=87.2%,而且主谐波次数越高,幅度衰减越快,所以空隙也越大。对于动作快的图像,空隙要小一些,但在整个频谱中还有很大区域是没有图像信息的。图像信号频谱实际上是呈梳齿状的离散谱,在相邻两组谱线间存在相当大的空隙,所以我们可以将色度信号安插在这些空隙之间。m的取值由电视传输系统的视频带宽所决定,例如按我国的电视标准,m的最大取值为6MHz/15625Hz=384。严格来讲,在隔行扫描的情况下,若考虑到奇、偶两场信号的差异,则图像信号的重复频率就为帧频。因此,离散谱线将以帧频为间隔。3)色差信号的频谱分析由于色差信号和亮度信号一样都是由三基色信号产生,并按同一扫描方式进行传
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 彩色电视 基本原理
限制150内