医学专题一放射性核素的吸附现象.ppt
《医学专题一放射性核素的吸附现象.ppt》由会员分享,可在线阅读,更多相关《医学专题一放射性核素的吸附现象.ppt(87页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、第四章第四章 放射性核素的低放射性核素的低浓物理化学物理化学(w l hu xu)Chapter 41第一页,共八十七页。4.1 放射性核素的共沉淀现象放射性核素的共沉淀现象 4.1.1 同晶现象同晶现象 4.1.2 共沉淀规律共沉淀规律 4.1.3 共沉淀时的热力学平衡共沉淀时的热力学平衡(pnghng)分配分配 4.1.4 共沉淀时各种因素对平衡分配的影响共沉淀时各种因素对平衡分配的影响4.2 放射性核素的吸附现象放射性核素的吸附现象 4.2.1 吸附类型吸附类型 4.2.2 在离子晶体上的吸附在离子晶体上的吸附 Contents 第四章目录(ml)2第二页,共八十七页。4.2.3 一级交
2、换吸附一级交换吸附 4.2.4 二级交换吸附二级交换吸附 4.2.4 吸附动力学吸附动力学4.3 放射性胶体和放射性气溶胶放射性胶体和放射性气溶胶 4.3.1 概述概述 4.3.2 放射性同位素在胶体中的状态放射性同位素在胶体中的状态(zhungti)4.3.3 放射性胶体放射性胶体 4.3.4 影响溶液中放射性同位素状态的因素影响溶液中放射性同位素状态的因素 4.3.4 放射性气溶胶放射性气溶胶 Contents3第三页,共八十七页。在放射化学中,微量浓度的放射性同位素在溶液和固体之间的分在放射化学中,微量浓度的放射性同位素在溶液和固体之间的分配,有其独特的规律配,有其独特的规律,因而特别重
3、要。因而特别重要。共沉淀共沉淀 吸附吸附微量浓度的放射性同位素在气体和液体间的分配,由放射微量浓度的放射性同位素在气体和液体间的分配,由放射性气体在液体中的溶解度来确定,并遵循亨利性气体在液体中的溶解度来确定,并遵循亨利(hngl)(hngl)定律。定律。胶体胶体 气溶胶气溶胶4第四页,共八十七页。如果放射性同位素以超低浓度的离子形式存在于溶液中,以致于如果放射性同位素以超低浓度的离子形式存在于溶液中,以致于加入能与该元素形成微溶化合物的物质时,它也不能形成独立的加入能与该元素形成微溶化合物的物质时,它也不能形成独立的固相,则可用固相,则可用载体(载体(carriercarrier)共沉淀法将
4、其从溶液中析出。共沉淀法将其从溶液中析出。用常量组分沉淀从溶液中提取微量组分的过程用常量组分沉淀从溶液中提取微量组分的过程(guchng)(guchng),称为,称为共沉淀共沉淀(coprecipitation)(coprecipitation)。5第五页,共八十七页。微量组分还可以在早先微量组分还可以在早先(zoxin)(zoxin)形成的常量组分的稳定固相和微量形成的常量组分的稳定固相和微量组分溶液间进行分配。组分溶液间进行分配。与晶体共沉淀时:微量组分分布于整个固相体积内,并进与晶体共沉淀时:微量组分分布于整个固相体积内,并进入常量组分的晶格结构时,叫入常量组分的晶格结构时,叫共结晶共结
5、晶(cocrystallizition)(cocrystallizition);微量组分在常量组分固体表面的沉淀过程叫;微量组分在常量组分固体表面的沉淀过程叫吸附吸附(Sorption)(Sorption)。6第六页,共八十七页。PdPd2+2+离子离子(lz)(lz)附着在附着在CaCOCaCO3 3沉淀的表面,形成共沉淀。沉淀的表面,形成共沉淀。CaCOCaCO3 3沉淀沉淀Ca2Pd2(被测(被测)共沉淀过程共沉淀过程(guchng)(guchng)7第七页,共八十七页。ZnCuSSS共吸附共吸附共结晶共结晶(jijng)8第八页,共八十七页。微量组分在溶液和固相之间的分配过程,对一系列
6、技微量组分在溶液和固相之间的分配过程,对一系列技术领域有重要意义:术领域有重要意义:半导体的导电性半导体的导电性催化剂的活性催化剂的活性荧光材料和量子发生器的性能荧光材料和量子发生器的性能金属金属(jnsh)的强度和塑性的强度和塑性9第九页,共八十七页。共沉淀和吸附还可以从盐中除去杂质,以制备纯物质:共沉淀和吸附还可以从盐中除去杂质,以制备纯物质:玛莉和皮埃尔玛莉和皮埃尔.居里提取并发现了钋和镭居里提取并发现了钋和镭伊伦和弗雷德里克伊伦和弗雷德里克.约里奥居里提取了磷和硅的人工约里奥居里提取了磷和硅的人工(rngng)放放射性同位素射性同位素哈恩和斯特拉斯曼发现了铀的裂变产物镧和钡的放射性哈恩
7、和斯特拉斯曼发现了铀的裂变产物镧和钡的放射性同位素同位素西柏格小组发现了钚和一系列超铀元素西柏格小组发现了钚和一系列超铀元素10第十页,共八十七页。放化实践中,放射性核素浓度很低,常常达不到难溶化合物放化实践中,放射性核素浓度很低,常常达不到难溶化合物的溶度积,因而不能沉淀,但是,当加入某种常量物质并的溶度积,因而不能沉淀,但是,当加入某种常量物质并使之沉淀时,微量物质随常量物质一起进入沉淀,这就是使之沉淀时,微量物质随常量物质一起进入沉淀,这就是放射性放射性共沉淀共沉淀现象。现象。共沉淀按其机理不同,分为共沉淀按其机理不同,分为(fn wi)同晶共沉淀同晶共沉淀 吸附共沉淀吸附共沉淀4.1
8、放射性核素的共沉淀现象放射性核素的共沉淀现象(xinxing)11第十一页,共八十七页。米歇利希(米歇利希(E.Mitscherlich)1819年发现年发现(fxin)了同晶现象,他了同晶现象,他指出,化学组成类似的物质,当指出,化学组成类似的物质,当化学元素的性质相似化学元素的性质相似时,他们时,他们可以以相同或者相似的形式结晶出来。可以以相同或者相似的形式结晶出来。同晶物质易于共结晶,并形成可变组成的相,后者叫固体溶液同晶物质易于共结晶,并形成可变组成的相,后者叫固体溶液(混晶,混晶,Solid Solution),这是同晶现象的主要标志。),这是同晶现象的主要标志。4.1.1 同晶现象
9、同晶现象(xinxing)12第十二页,共八十七页。根据米歇利希的观点,根据米歇利希的观点,只有带同样的晶体结构,并且在分子中只有带同样的晶体结构,并且在分子中有相同数目的原子有相同数目的原子,以相同形式结合的物质,才可能是同晶,以相同形式结合的物质,才可能是同晶物质。同时,根据他的观点,形成混晶不仅证明了两种物物质。同时,根据他的观点,形成混晶不仅证明了两种物质结晶质结晶(jijng)形式相近,而且证明了化合物结构属于同一类形式相近,而且证明了化合物结构属于同一类型,其结构单位的氧化态一样,多数情况下,形成化合物型,其结构单位的氧化态一样,多数情况下,形成化合物的元素化学性质也相似。的元素化
10、学性质也相似。米歇利希曾发现所谓同二晶现象,米歇利希曾发现所谓同二晶现象,即化学组成相同,晶体结构不即化学组成相同,晶体结构不同的物质也能形成混晶。同的物质也能形成混晶。如:硫酸锰含五个水分子的三斜晶系如:硫酸锰含五个水分子的三斜晶系(8.6)-含七个水分子的单斜晶系(含七个水分子的单斜晶系(8.6)13第十三页,共八十七页。格利姆(格利姆(H.Grimm,1924)和戈德施米特()和戈德施米特(V.Goldschmidt,1927)发展了上述工作,扩大了对同晶的认识。)发展了上述工作,扩大了对同晶的认识。在相似的化合物中,如二价碳酸盐系列,在相似的化合物中,如二价碳酸盐系列,提高阳离子半径提
11、高阳离子半径将导致将导致方解石转变方解石转变(zhunbin)为文石结构(表为文石结构(表4.1)。14第十四页,共八十七页。化合物化合物阳离子半径,阳离子半径,A A0 0晶体结构晶体结构MgCO3CoCO3FeCO3ZnCO3MnCO3CdCO30.740.780.800.830.910.93方解石方解石CaCO3SrCO3PbCO3BaCO31.041.201.261.58文石文石15第十五页,共八十七页。按戈德施米特的说法按戈德施米特的说法(shuf),如果存在下列情况,如果存在下列情况,就有可能同晶:就有可能同晶:a)两种化合物原子的电荷总数及分布一样,两种化合物原子的电荷总数及分布
12、一样,Sr2S6O42-和和Ra2S6O42-b)电荷总数相同,但电荷分布不同,电荷总数相同,但电荷分布不同,Sr2S6O42-和和KCl7O42-C C)电荷总数不同,但原子数目一样,电荷总数不同,但原子数目一样,TiO4O22-和和Mg2F2-16第十六页,共八十七页。同晶现象的现代概念完全建立在对化合物晶格的同晶现象的现代概念完全建立在对化合物晶格的研究上。目前,混晶分为五类:研究上。目前,混晶分为五类:1.第第类混晶(取代类混晶(取代(qdi)(qdi)同晶现象)。同晶现象)。晶格中第一晶格中第一组分的离子被第二组分离子取代。对于这类混晶,原子组分的离子被第二组分离子取代。对于这类混晶
13、,原子大小必须相近,基元晶格要有同样的对称性以及相近的大小必须相近,基元晶格要有同样的对称性以及相近的离子极化性(如离子极化性(如KClKClRbClRbCl)。同二晶也属于该类)。同二晶也属于该类同晶现象。同晶现象。17第十七页,共八十七页。2.第第类混晶(植入同晶现象)。类混晶(植入同晶现象)。第二组分的原子占据第一组分第二组分的原子占据第一组分晶格的空间,对于这类同晶现象,主体原子和植入原子的大小必晶格的空间,对于这类同晶现象,主体原子和植入原子的大小必须须(bx)(bx)有很大差异。如有很大差异。如C C可以植入可以植入FeFe或或TiTi中。中。3.3.空间充满的混晶(空间充满同晶现
14、象)。空间充满的混晶(空间充满同晶现象)。在这种情况下,第在这种情况下,第一组分的原子既被第二组分原子取代,第二组分原子又充满第一一组分的原子既被第二组分原子取代,第二组分原子又充满第一组分晶格中原子的空间。如组分晶格中原子的空间。如YFYF3 3与与CaFCaF2 2形成的混晶(下图)。形成的混晶(下图)。18第十八页,共八十七页。Ca2FY319第十九页,共八十七页。4.格利姆混晶(格利姆同晶现象)。格利姆混晶(格利姆同晶现象)。相互差别很大,但满足相互差别很大,但满足格利姆戈德施密特规则的化合物,如格利姆戈德施密特规则的化合物,如 Ba(Sr,Pb)SO4-K(NH4,Na)MnO4,可
15、形成混晶。混晶的形成,可形成混晶。混晶的形成是由于一种组分的晶体是由于一种组分的晶体(jngt)参到另一组分之故。参到另一组分之故。5.反常混晶。反常混晶。不符合格利姆戈德施密特同晶现象的混晶。不符合格利姆戈德施密特同晶现象的混晶。如氯化氨与氯化铁(如氯化氨与氯化铁(),氟化镭与氟化镧,),氟化镭与氟化镧,Am Am(V V)与)与K K4 4UOUO2 2(CO(CO3 3)3 3。由于形成类似常量组分晶格的络合物,。由于形成类似常量组分晶格的络合物,因此还可能存在无限混溶度。因此还可能存在无限混溶度。20第二十页,共八十七页。1926年,哈恩将沉淀分为两类年,哈恩将沉淀分为两类真共沉淀和吸
16、附共沉淀。真共沉淀和吸附共沉淀。在真共沉淀中微量组分分配在沉淀的表面(有时在真共沉淀中微量组分分配在沉淀的表面(有时(yush)分配在沉分配在沉淀内部)。淀内部)。区别真共沉淀和吸附共沉淀的标志是,在真共沉淀时,微量区别真共沉淀和吸附共沉淀的标志是,在真共沉淀时,微量组分的分配系数是常值,而吸附共沉淀时,沉淀组分的分配系数是常值,而吸附共沉淀时,沉淀溶液间溶液间很快很快建立平衡,而真沉淀时,建立平衡建立平衡,而真沉淀时,建立平衡较慢较慢;表面电荷对吸附;表面电荷对吸附共沉淀有影响,而对真共沉淀没有影响。但这些并不是总能将共沉淀有影响,而对真共沉淀没有影响。但这些并不是总能将两类沉淀区分开。两类
17、沉淀区分开。4.1.2 共沉淀规律共沉淀规律(gul)21第二十一页,共八十七页。哈恩曾建立了吸附共沉淀和真共沉淀的两个哈恩曾建立了吸附共沉淀和真共沉淀的两个(lin)(lin)原则。真原则。真共沉淀规则的内容是:共沉淀规则的内容是:“放射性核素或者其他处于微量的化学放射性核素或者其他处于微量的化学元素仅在下列情况下转到固相晶体:如果它能加入构成常量组元素仅在下列情况下转到固相晶体:如果它能加入构成常量组分的晶格,即微量组分与固相阴离子形成化合物,该化合物的分的晶格,即微量组分与固相阴离子形成化合物,该化合物的晶体与相应的常量组分化合物晶体与相应的常量组分化合物同晶同晶。赫洛宾(赫洛宾(192
18、4)指出:如果两个物质是同晶或者同二晶,而其)指出:如果两个物质是同晶或者同二晶,而其中一个的浓度很小,则中一个的浓度很小,则微量组分于恒温和恒压下在结晶相和溶液微量组分于恒温和恒压下在结晶相和溶液间的分配是一恒定值间的分配是一恒定值,与两相的量之比无关。,与两相的量之比无关。22第二十二页,共八十七页。(4.1)x x微量组分在晶体中的量;微量组分在晶体中的量;x x0 0微量组分在体系中的总量;微量组分在体系中的总量;m mT T晶体质量;晶体质量;m mP P溶液溶液(r(r ngyngy)质量;质量;T T晶体密度;晶体密度;p溶液密度;溶液密度;KxKx赫洛宾常数。赫洛宾常数。23第
19、二十三页,共八十七页。方程(方程(4.1)与能斯特方程一致,因为)与能斯特方程一致,因为VT和和VP固相和溶液的体积;固相和溶液的体积;cT和和cP微量组分微量组分(zfn)在晶体在晶体和溶液中的浓度。对于实用目的,更为方便的表达式如下:和溶液中的浓度。对于实用目的,更为方便的表达式如下:x x0 0和和x x微量组分在体系微量组分在体系(tx(tx)和晶体中的量;和晶体中的量;y y0 0和和y y常量组常量组分在体系和晶体中的量;分在体系和晶体中的量;D D结晶系数结晶系数24第二十四页,共八十七页。如果常量组分和微量组分在溶液中活度系数不为如果常量组分和微量组分在溶液中活度系数不为1,那
20、么微,那么微量组分在溶液和固相间的热力学结论也必须十分严格。量组分在溶液和固相间的热力学结论也必须十分严格。如果在含有如果在含有(hn yu)组分组分A与组分与组分B的结晶溶液体系中存在等温平的结晶溶液体系中存在等温平衡,那么衡,那么4.1.3 共沉淀法(共结晶共沉淀法(共结晶(jijng))时的热力学平衡分配)时的热力学平衡分配下标下标T,P表示表示(biosh)固相和溶液相中的组分固相和溶液相中的组分平衡时,平衡时,AT AP BT BP 25第二十五页,共八十七页。AT+BT AP+BP (4.3)i=i0+RTlnai (4.4)式中式中,ai i组分的热力学活度组分的热力学活度 根据
21、根据(gnj)以下方式选取体系各组分的标准状态。以下方式选取体系各组分的标准状态。1、对于固相中的任意纯组分:、对于固相中的任意纯组分:aixifi (4.6)limfi(x1)lim ai(x1)1 (4.7)式中式中xii组分在固相中的摩尔份数;组分在固相中的摩尔份数;fi中中i组分在固相中的热组分在固相中的热力学活度系数。力学活度系数。26第二十六页,共八十七页。这样选取标准状态时,根据这样选取标准状态时,根据4.4式得式得AT 和和BT为纯组分为纯组分A、B的的 化学势;化学势;AP、BP 为为mi1时假设理想溶液时假设理想溶液(rngy)中组分中组分A、B的化学势。的化学势。平衡常数
22、平衡常数 K aBT aAP/(aAT aBP)(4.7a)由于纯固相的热力学活度由于纯固相的热力学活度aT1,故对于纯组分,故对于纯组分A、B的饱的饱和溶液:和溶液:0AT AH 0AP+RTln aAH (4.8a)0BT BH 0BP+RTln aBH (4.8b)27第二十七页,共八十七页。可得可得aAHexp(0AP 0AT)/RT (4.9a)aBHexp(0BP 0BT)/RT (4.9b)由由(4.9a)、(4.9b)得得K aAH/aBH (4.10)因此因此,平衡常数等于组分平衡常数等于组分(zfn)A和和B在其饱和溶液中的热力学活度在其饱和溶液中的热力学活度比比,如果两组
23、分在溶液中的活度系数相等,平衡常数也等与两,如果两组分在溶液中的活度系数相等,平衡常数也等与两组分的溶解度比。组分的溶解度比。28第二十八页,共八十七页。如如v可离解成可离解成v和和v两种离子两种离子ai ai v ai v aiv共结晶时,共结晶时,液体溶液常被常量液体溶液常被常量(chngling)组分组分A所饱和。所饱和。由由(4.5)-(4.7)得得mAH 组分组分A在饱和液体溶液中的摩尔浓度在饱和液体溶液中的摩尔浓度;AH组分组分A的热力学的热力学活度系数活度系数4.1129第二十九页,共八十七页。对于无限稀释溶液,对于无限稀释溶液,xA1,fA1,fB为定值,由式(为定值,由式(4
24、.11)或者或者 K=D0fB (4.13)D0为拉特涅尔分馏为拉特涅尔分馏“真真”常数。该值同常数。该值同K一样,与一样,与温度温度有关。此外有关。此外(cwi),它还与固体溶液中常量组分的,它还与固体溶液中常量组分的热力学活度热力学活度有关。有关。4.1230第三十页,共八十七页。方程方程(fngchng)(4.11)可写成可写成 (4.15)D=xBmAH/(xAmB)(4.16)DA、B体系体系(tx)中的结晶系数中的结晶系数31第三十一页,共八十七页。由于热力学活度系数与温度及溶液组成有关,而平衡常数仅与温度有关,故结晶系数不仅是温度,而且(r qi)还是溶液组成的函数。对于理想溶液
25、,1,因此D=K,即仅与温度有关。当组分B浓度很小时,xA1,这时D=xBmAH/mB (4.17)当xB xA时,组分B在固相中的摩尔份数可用4.18式M为分子量32第三十二页,共八十七页。溶液中溶液中A、B的摩的摩尔尔浓浓度比等于度比等于(dngy)每个每个组组分的摩分的摩尔尔数比:数比:将4.18-19带入4.17,得4.2式4.1933第三十三页,共八十七页。由式由式4.14和和4.17得:得:D0=D(AH/B)即A、B两组分的热力学平衡分配与体系中的结晶系数(xsh)有关,与两组分在溶液中的活度系数(xsh)有关。4.2034第三十四页,共八十七页。4.1.4 共沉淀时各种因素对平
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 医学 专题 放射性 核素 吸附 现象
限制150内