数学层次分析法学习教案.pptx
《数学层次分析法学习教案.pptx》由会员分享,可在线阅读,更多相关《数学层次分析法学习教案.pptx(56页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、会计学1数学数学(shxu)层次分析法层次分析法第一页,共56页。第一第一(dy)讲讲层次分析法层次分析法第1页/共56页第二页,共56页。1.1 引言与引例引言与引例 层次分析法层次分析法(Analytic Hierarchy Process,简称,简称 AHP)是美国运筹学家是美国运筹学家 T.L.Saaty 教授于上世纪教授于上世纪 70 年代初期提出年代初期提出的一种简便、灵活的一种简便、灵活(ln hu)而又实用的而又实用的多准则决策方法。多准则决策方法。第2页/共56页第三页,共56页。人们在进行社会、经济、管理以及工程技术领域问题的系统分析中,面临的常常是一个由相互(xingh)
2、关联、相互(xingh)制约的众多因素构成的复杂而往往缺少定量数据的系统。在这样的系统中,人们感兴趣的问题之一是:就 n 个不同事物所共有的某一性质而言,应该怎样对任一事物的所给性质表现出来的程度(排序权重)赋值,使得这些数值能客观地反映不同事物之间在该性质上的差异?第3页/共56页第四页,共56页。引例:综合评价(pngji)某公司招聘工作人员,拟从能力、知识和仪态三个方面考核应聘者的综合表现。为此建立了如下评价(pngji)指标的层次结构:第4页/共56页第五页,共56页。其中 x1=写作水平,x2=外语(wiy)程度,x3=公关能力,x4=国内外政治经济时事,x5=计算机操作知识,x6=
3、容貌与风度,x7=体形高矮与肥瘦,x8=音色。第5页/共56页第六页,共56页。如能知道底层指标 x1,x8 对最高层的权系数 w1,w8 以及(yj)各底层指标的得分,就可以按照如下的评价公式,对应聘者进行考核、排序:第6页/共56页第七页,共56页。引例(yn l):综合决策 某地要改善一条河道的过河运输条件,为此需要确定是否要建立桥梁或隧道以代替现有的轮渡。在此问题中过河方式的确定取决于过河的效益与代价(即成本)。通常我们用费效比(即效益/代价)作为选择方案的标准。为此分别给出了两个层次结构(图 和图)。它们分别考虑了影响过河的效益与代价的因素,这些因素可分为三类:经济的、社会的和环境的
4、。第7页/共56页第八页,共56页。第8页/共56页第九页,共56页。第9页/共56页第十页,共56页。决策的制定(zhdng)将取决于根据这两个层次结构确定的方案的效益权重与代价权重之比,即如能知道底层方案 Di(i=1,2,3)对最高层 Aj(j=1,2)的权系数 wij(i=1,2,3,j=1,2),则可根据如下的决策公式对三个方案进行排序、选择:Si=wi1/wi2,i=1,2,3 第10页/共56页第十一页,共56页。引例(yn l):预测或估计 在体育比赛中预测一个代表队的成绩,有三种可能的前景:x1=名列第一 x2=名列前八名(不包括第一)x3=名落孙山 所用的评价指标有三个:竞
5、技实力、自信心、环境因素。第11页/共56页第十二页,共56页。为此(wi c)构建如下的层次结构:第12页/共56页第十三页,共56页。如能知道底层指标 x1,x2,x3 对最高层的权系数 w1j,w2j,w3j(j=1,2,3),将各相同前景的权系数相加,就可以按照(nzho)如下的预测公式,对各前景 x1,x2,x3 对进行先验预测:第13页/共56页第十四页,共56页。引例:投入量的分配 在这种问题中,投入量给定(i dn),要把它们分配到若干部门去。如能知道各部门对投入量的需求权重,把权系数看成分配的百分比率即可。第14页/共56页第十五页,共56页。层次分析法为这类问题的决策和排序
6、提供了一种新的、简洁而实用的建模方法。它把复杂问题分解成组成因素,并按支配关系形成层次结构,然后用两两比较的方法确定决策方案的相对重要性。层次分析法在经济、科技(kj)、文化、军事、环境乃至社会发展等方面的管理决策中都有广泛的应用。第15页/共56页第十六页,共56页。1.2 层次分析法的基本原理和步骤层次分析法的基本原理和步骤 运用层次分析法解决问题,大运用层次分析法解决问题,大体可以分为四个步骤:体可以分为四个步骤:1.建立问题的递阶层次结构;建立问题的递阶层次结构;2.构造两两比较构造两两比较(bjio)判断矩判断矩阵;阵;3.由判断矩阵计算被比较由判断矩阵计算被比较(bjio)元素相对
7、权重;元素相对权重;4.计算各层次元素的组合权重。计算各层次元素的组合权重。第16页/共56页第十七页,共56页。建立递阶层次结构 建立递阶层次结构是层次分析法中的第一步。首先,将复杂问题分解为称之为元素的各组成部分,把这些(zhxi)元素按属性不同分成若干组,以形成不同层次。同一层次的元素作为准则,对下一层次的某些元素起支配作用,同时它又受上一层次元素的支配。第17页/共56页第十八页,共56页。这种从上至下的支配关系形成了一个递阶层次:处于(chy)最上面的的层次通常只有一个元素,一般是分析问题的预定目标或理想结果;中间层次一般是准则、子准则;最低一层包括决策的方案。层次之间元素的支配关系
8、不一定是完全的,即可以存在这样的元素,它并不支配下一层次的所有元素。第18页/共56页第十九页,共56页。一个典型的层次可以用下图表示(biosh)出来:第19页/共56页第二十页,共56页。其次,层次数与问题的复杂程度和所需要分析的详尽程度有关。每一层次中的元素一般不超过 9 个,因一层中包含数目过多的元素会给两两比较判断带来困难。第三,一个好的层次结构对于解决问题是极为重要的。层次结构建立在决策者对所面临的问题具有全面深入的认识基础上,如果在层次的划分和确定层次之间的支配关系上举棋不定(j q b dng),最好重新分析问题,弄清问题各部分相互之间的关系,以确保建立一个合理的层次结构。第2
9、0页/共56页第二十一页,共56页。一个递阶层次结构应具有以下特点:(1)从上到下顺序地存在支配关系,并用直线(zhxin)段表示。除第一层外,每个元素至少受上一层一个元素支配,除最后一层外,每个元素至少支配下一层次一个元素。上下层元素的联系比同一层次中元素的联系要强得多,故认为同一层次及不相邻元素之间不存在支配关系。(2)整个结构中层次数不受限制。第21页/共56页第二十二页,共56页。(3)最高层只有一个元素(yun s),每个元素(yun s)所支配的元素(yun s)一般不超过 9 个,元素(yun s)多时可进一步分组。(4)对某些具有子层次的结构可引入虚元素(yun s),使之成为
10、递阶层次结构。第22页/共56页第二十三页,共56页。构造两两比较判断矩阵 在建立递阶层次结构以后,上下层次之间元素的隶属关系(gun x)就被确定了。假定上一层次的元素 Ck 作为准则,对下一层次的元素 A1,An 有支配关系(gun x),我们的目的是在准则 Ck 之下按它们相对重要性赋予 A1,An 相应的权重。第23页/共56页第二十四页,共56页。对于大多数社会经济问题,特别是对于人的判断起重要作用的问题,直接得到这些(zhxi)元素的权重并不容易,往往需要通过适当的方法来导出它们的权重。层次分析法所用的是两两比较的方法。第24页/共56页第二十五页,共56页。第一(dy),在两两比
11、较的过程中,决策者要反复回答问题:针对准则 Ck,两个元素 Ai 和 Aj 哪一个更重要一些,重要多少;需要对重要多少赋予一定的数值。这里使用 19 的比例标度,它们的意义见下面的表 。第25页/共56页第二十六页,共56页。表 标度(bio d)的意义1表示两个元素相比,具有同样的重要性3表示两个元素相比,一个元素比另一个元素稍微重要5表示两个元素相比,一个元素比另一个元素明显重要7表示两个元素相比,一个元素比另一个元素强烈重要9表示两个元素相比,一个元素比另一个元素极端重要2,4,6,8 为上述相邻判断的中值第26页/共56页第二十七页,共56页。例如,准则是社会经济效益,子准则可分为(f
12、n wi)经济、社会和环境效益。如果认为经济效益比社会效益明显重要,它们的比例标度取 5,而社会效益对于经济效益的比例标度则取 1/5。第27页/共56页第二十八页,共56页。19 的标度方法是将思维判断数量化的一种好方法。首先,在区分事物的差别时,人们总是用相同、较强、强、很强、极端强的语言。再进一步细分,可以在相邻的两级中插入折衷的提法,因此对于大多数决策判断来说,19 级的标度是适用的。其次,心理学的实验表明,大多数人对不同事物在相同程度属性上差别的分辨能力在 59 级之间,采用 19 的标度反映多数人的判断能力。再次,当被比较的元素其属性处于不同的数量级时,一般需要(xyo)将较高数量
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 数学 层次 分析 法学 教案
限制150内