多分辨率分析与正交小波变换.pptx
《多分辨率分析与正交小波变换.pptx》由会员分享,可在线阅读,更多相关《多分辨率分析与正交小波变换.pptx(57页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、概述多分辨率是小波分析中的最重要的概念之一,它从函数空间的高度研究函数的多分辨率表示将一个函数表示为一个低频成分与不同分辨率下的高频成分。更重要的是,多分辨率能够提供一种构造小波的统一框架,并且能够提供函数分解与重构的快速算法。第1页/共57页本章主要内容多分辨率分析尺度函数和小波函数二尺度方程及多分辨率滤波器组二进正交小波变换的Mallat算法常见小波函数第2页/共57页1.多分辨率分析定义:多分辨率分析(Multiresolution Analysis,MRA)是用小波函数的二进伸缩和平移表示函数这一思想的更加抽象复杂的表现形式,它重点处理整个函数集,而非侧重处理作为个体的函数。基本思想:
2、将L2(R)用它的子空间Vj,Wj表示,其中Vj,Wj分别称为尺度空间和小波空间。第3页/共57页补充:直和设E是线性空间,L1,L2,Ln是E的子空间,如果任一元素xE可以惟一表示成x=x1+x2+xn,其中xk Lk(k=1,2,n),则称E是L1,L2,Ln的直和,记为:第4页/共57页尺度函数,j0,-1,-2,-3;k=0,1,2,,(这里暂对j和k的范围做了限制)形成了伸缩平移系统,其中j不同,张成了不同的子空间,如图:第5页/共57页 ,k=0,1,7,张成了 子空间;,k=0,3,张成了 子空间;,k=0,1,张成了 子空间;,k=0,张成了 子空间。由图可知:第6页/共57页
3、比喻类似于人的视觉系统。例如:人在观察某一目标时,不妨设他所处的分辨率为j(或2j),观察目标所获得的信息是Vj,当他走近目标,即分辨率增加到j-1(或2j-1),他观察目标所获得的信息为Vj-1,应该比分辨率j下获得的信息更加丰富,即 ,分辨率越高,距离越近;反之,则相反。第7页/共57页在分辨率分析中,Vj称为逼近空间,我们把平方可积的函数f(t)L2(R)看成是某一逐级逼近的极限情况。每次逼近都是用一低通平滑函数(t)对f(t)做平滑的结果,在逐级平滑时平滑函数(t)也做逐级逼近,这就是多分辨率,即用不同分辨率来逐级逼近待分析函数f(t)。第8页/共57页见word第9页/共57页性质尺
4、度空间Vj具有以下递归嵌套关系:将Vj,Vj1相关联的关键性质是:如:f(t)Vj,则f(t/2)Vj-1,f(2t)Vj+1。位移不变性:函数的时移不改变其所属空间,即如果f(t)Vj,则f(t-k)Vj。第10页/共57页空间的剖分是完整的,即当j-,VjL2(R),包含整个平方可积的实变函数空间。当j+,Vj 0,即空间最终剖分到空集为止。第11页/共57页V0中的任意函数f(t)均可表示为 的线性组合,我们设P0f(t)代表f(t)在V0上的投影,则有:是线性组合的权重,其求法如下:我们称P0f(t)为f(t)在V0处的平滑逼近,也就是f(t)在j=0下的概貌,称为f(t)在分辨率j=
5、0下的离散逼近。第12页/共57页第13页/共57页我们刚才推导出但是,毕竟 不等于 ,也即 比 对x(t)近似的好,但二者之间肯定有误差。这一误差是由(t k)和(t k)的宽度不同而产生的,因此,这一差别应是一些“细节”信号,我们记之为 。这样,有P0 x(t)=P1 x(t)+D1 x(t)该式的含义是:x(t)在高分辨率基函数所形成的空间中的近似等于它在低分辨率空间中的近似再加上某些细节。现在我们来寻找D1 x(t)的表示方法。第14页/共57页我们设D1f(t)代表f(t)在W1上的投影,有 是线性组合的权重,其求法:第15页/共57页第16页/共57页进行类推,可得:Pjf(t)是
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 分辨率 分析 正交 变换
限制150内