2022-2023学年江苏省苏州市高一上学期期末考试数学试卷含答案.pdf
《2022-2023学年江苏省苏州市高一上学期期末考试数学试卷含答案.pdf》由会员分享,可在线阅读,更多相关《2022-2023学年江苏省苏州市高一上学期期末考试数学试卷含答案.pdf(16页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、江苏省苏州市 2022-2023学年高一上学期期末数学试题 一、单项选择题:本大题共 8 小题,每小题 5 分,共 40 分.在每小题给出的四个选项中,只有一项是符合题目要求的.1已知集合08UxxN,1,2,3A,3,4,5,6B,则下列结论错误的是()A3AB B1,2,3,4,5,6AB C4,5,6,7,8UA D1,2,7UB 2已知 a,Rb,那么“33ab”是“1133loglogab”的()A充分不必要条件 B必要不充分条件 C充要条件 D既不充分又不必要条件 3毛主席的诗句“坐地日行八万里”描写的是赤道上的人即使坐在地上不动,也会因为地球自转而每天行八万里路程已知我国四个南极
2、科考站之一的昆仑站距离地球南极点约 1050km,把南极附近的地球表面看作平面,则地球每自转rad3,昆仑站运动的路程约为()A2200km B1650km C1100km D550km 4用二分法求函数 ln11f xxx在区间 0,1上的零点,要求精确度为 0.01 时,所需二分区间的次数最少为()A5 B6 C7 D8 5若实数 a,b 满足12abab,则 ab 的最小值为()A2 B2 C2 2 D4 6设函数 cos06fxx若 4fxf对任意的实数 x 都成立,则的最小值为()A13 B12 C23 D1 7已知幂函数223*mmyxmN的图象关于 y 轴对称,且在0,上单调递减
3、,则满足33132mmaa的 a 的取值范围为()A0,B2,3 C30,2 D2 3,1,3 2 8定义:正割1seccos,余割1cscsin已知 m 为正实数,且22csctan15mxx对任意的实数,2Zx xkk均成立,则 m 的最小值为()A1 B4 C8 D9 二、多项选择题:本大题共 4 小题,每小题 5 分,共 20 分.在每小题给出的四个选项中,有多个选项符合题目要求,全部选对的得 5 分,选对但不全的得 2 分,有选错的得 0 分.9下列选项中,与11sin6的值相等的是()A2sin15 sin75 Bcos18 cos42sin18 sin42 C22cos 151
4、D2tan 22.51tan 22.5 10下列函数中,既是偶函数又是区间(1,)上的增函数有()A13xy Bln1ln1yxx C22yx D1yxx 11函数 3sin 2f xx的部分图象如图所示,则下列选项中正确的有()A f x的最小正周期为 B23f是 f x的最小值 C f x在区间0,2上的值域为3 3,2 2D把函数 yf x的图象上所有点向右平移12个单位长度,可得到函数3sin 2yx的图象 12若63b,62a,则()A1ba B14ab C2212ab D110ba 三、填空题:本大题共 4 小题,每小题 5 分,共 20 分.13若对任意 a0 且1a,函数 11
5、xf xa的图象都过定点 P,且点 P 在角的终边上,则tan_ 14已知1sin63,则25sinsin63的值为_ 15设函数 f x的定义域为R,f x为偶函数,1f x为奇函数,当 1,2x时,()2xf xab,若 014ff,则72f_ 16设函数2,0()1,04xexf xxxx,则 0ff_,若方程 f xb有且仅有 1 个实数根,则实数 b 的取值范围是_ 四、解答题:本大题共 6 小题,共 70 分.解答应写出必要的文字说明、证明过程或演算步骤.17(10 分)已知集合2log12Axx,22210Bx xaxa (1)若1a,求AB;(2)求实数 a 的取值范围,使_成
6、立 从RAB,UBA,RBA 中选择一个填入横线处并解答 18(12 分)已知二次函数 2f xaxbxc(a,b,c 均为常数,0a),若1和 3 是函数 f x的两个零点,且 f x最大值为 4(1)求函数 f x的解析式;(2)试确定一个区间 D,使得 f x在区间 D 内单调递减,且不等式 f xmxm 0m 在区间 D 上恒成立 19(12 分)已知,为锐角,1tan2,2cos10 (1)求cos2的值;(2)求的值 20(12 分)设 a,b 为实数,已知定义在 R 上的函数 51xbf xa为奇函数,且其图象经过点21,3(1)求 f x的解析式;(2)用定义证明 f x为 R
7、 上的增函数,并求 f x在1,2上的值域 21(12 分)为了研究其种微生物的生长规律,研究小组在实验室对该种微生物进行培育实验前三天观测的该微生物的群落单位数量分别为 8,14,26根据实验数据,用 y 表示第 t(*aN)天的群落单位数量,某研究员提出了两种函数模型:2yaxbxc;xyp qr,其中0q 且1q (1)根据实验数据,分别求出这两种函数模型的解析式;(2)若第 4 天和第 5 天观测的群落单位数量分别为 50 和 98,请从两个函数模型中选出更合适的一个,并预计从第几天开始该微生物的群落单位数量超过 500 22(12 分)若函数 f x在定义域内存在实数 x 满足 fx
8、k f x-,kZ,则称函数 f x为定义域上的“k 阶局部奇函数”(1)若函数 tan2sinf xxx,判断 f x是否为0,上的“二阶局部奇函数”并说明理由;(2)若函数 lgf xmx是2,2上的“一阶局部奇函数”,求实数 m 的取值范围;(3)对于任意的实数,2t,函数 22f xxxt恒为 R 上的“k 阶局部奇函数”,求 k 的取值集合 江苏省苏州市 20222023 学年高一上学期期末数学试题【参考答案】一、单项选择题:本大题共 8 小题,每小题 5 分,共 40 分.在每小题给出的四个选项中,只有一项是符合题目要求的.1【分析】分别根据交集,并集,补集的定义即可求出【解答】解
9、:081,2,3,4,5,6,7UxxN,1,2,3A,3,4,5,6B,则3AB,1,2,3,4,5,6AB,4,5,6,7UA,1,2,7UB 故选:C【点评】本题考查了集合的基本运算,属于基础题 2【分析】由对数不等式和指数不等式的解法,结合充分必要条件的定义,可得结论【解答】解:33abab,1133loglog0abab,由0ab可推得ab,但ab,不可推得0ab,所以“33ab”是“1133loglogab”的必要不充分条件 故选:B【点评】本题考查不等式的解法和充分必要条件的判断,考查转化思想和运算能力、推理能力,属于基础题 3【分析】利用弧长公式即可求解【解答】解:因为昆仑站距
10、离地球南极点约 1050km,地球每自转rad3,所以由弧长公式得:105011003l 故选:C【点评】本题主要考查了扇形的弧长公式的应用,属于基础题 4【分析】根据题意,由二分法中区间长度的变化,分析可得经过 n 次操作后,区间的长度为12n,据此可得10.012n,解可得 n 的取值范围,即可得答案【解答】解:根据题意,原来区间0,1的长度等于 1,每经过二分法的一次操作,区间长度变为原来的一半,则经过 n 次操作后,区间的长度为12n,若10.012n,即7n 故选:C【点评】本题考查二分法的定义和运用,注意二分法区间长度的变化,考查运算能力和推理能力,属于基础题 5【分析】由12ab
11、ab,可判断0a,0b,然后利用基础不等式1222abab即可求解 ab 的最小值【解答】解:12abab,0a,0b,1222abab(当且仅当2ba时取等号),22abab,解可得,2 2ab,即 ab 的最小值为2 2,故选:C【点评】本题主要考查了基本不等式在求解最值中的简单应用,属于基础试题 6【分析】根据 4fxf恒成立,得到当4x时,函数 f x取得最大值,利用最值性质进行求解即可【解答】解:若 4fxf对任意的实数 x 都成立,则4f是 f x的最大值,即246k,kZ,即283k,kZ,0,当0k 时,取得最小值为23,故选:C【点评】本题主要考查三角函数的图象和性质,根据条
12、件确定当4x时,函数 f x取得最大值是解决本题的关键 7【分析】由条件知2230mm,*mN,可得1m 再利用函数13yx的单调性,分类讨论可解不等式【解答】解:幂函数223mmyx*mN在0,上单调递减,故2230mm,解得13m,又*mN,故1m 或 2,当1m 时,4yx的图象关于 y 轴对称,满足题意,当2m 时,3yx的图象不关于 y 轴对称,舍去,故1m,不等式化为1133132aa,函数13yx在,0和0,上单调递减,故1320aa 或0132aa 或1032aa,解得1a 或2332a 故选:D【点评】本题主要考查函数单调性的性质与判断,属于基础题 8【分析】先将原不等式化简
13、,再利用均值不等式求最值即可【解答】解:由已知得222sin15sincosmxxx,即422sin15sincosxmxx 因为2xkkZ,所以2cos0,1x,则2244222222221 cossin1cos2cos15sin15 1 cos15 15cos15 15cos2coscoscosxxxxxxxxxxx4222221 cos111716cos17216cos9coscoscosxxxxxx,当且仅当21cos4x 时等号成立,故9m 故选:D【点评】本题考查三角函数同角关系式,基本不等式,属于基础题 二、多项选择题:本大题共 4 小题,每小题 5 分,共 20 分.在每小题给
14、出的四个选项中,有多个选项符合题目要求,全部选对的得 5 分,选对但不全的得 2 分,有选错的得 0 分.9【分析】求出11sin6的值,进而利用二倍角的正弦求值判断 A;利用两角和的余弦求值判断 B;利用二倍角的余弦求值判断 C;利用两角和的正切求值判断 D【解答】解:111sinsin2sin6662.对于 A,12sin15 sin752sin15 cos15sin302 ;对于 B,1cos18 cos42sin18 sin42cos 1842cos602 ;对于 C,232cos 151cos302 ;对于 D,因为22tan22.5tan4511tan 22.5,可得2tan22.
15、511 tan 22.52.与11sin6的值相等的是 ABD 故选:ABD【点评】本题考查三角函数的化简求值,考查诱导公式、倍角公式及两角和的三角函数,是基础题 10【分析】根据指数函数,对数函数,二次函数和对勾函数的性质,逐一进行检验即可求解【解答】解:|31xy,定义域为 R,又|3131xxfxf x ,故函数为偶函数,当1x 时,|3131xxf x 单递增,故 A 正确;要使函数ln1ln1yxx有意义,则有x10 x1x 10 ,定义域1,x不关于0,0对称故不为偶函数,故 B 错误;22yx,对称轴0 x,函数在0,上单调递增,且为偶函数,故 C 正确;1yxx,定义域0 x
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022 2023 学年 江苏省 苏州市 高一上 学期 期末考试 数学试卷 答案
限制150内