线性代数(李建平)习题答案详解__复旦大学出版社.pdf
《线性代数(李建平)习题答案详解__复旦大学出版社.pdf》由会员分享,可在线阅读,更多相关《线性代数(李建平)习题答案详解__复旦大学出版社.pdf(17页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、线性代数课后习题答案线性代数课后习题答案习题一1.2.3(答案略)4.(1)(127435689)415 (奇数)(127485639)为偶数故所求为127485639(2)(397281564)25119(奇数)所求为 3972815645.(1)(532416)42110 6 (偶数)项前的符号位1 1(正号)(2)a32a53a26a11a44a65 a11a26a32a44a53a65(162435)415 项前的符号位(1)5 1(负号)6.(1)原式=(1)(234(2)原式=1(3)原式=(1)n1)612n (1)(n1)n!(n 1)(n 2)21n(1)n(n1)2(n1)
2、(n2)21 n)(n1)(n2)2n!(n(n1)21)a1na2(n1)an1(1)a1na2(n1)an17.8(答案略)9.D 162x019(42)0 x 710.(1)从第 2 列开始,以后各列加到第一列的对应元素之上,得x111x11xxx(n1)x(n1)x(n1)1x111x1110 x1000 x 1x(n1)x(n1)(x 1)n1(2)按第一列展开:yx00y000 x00yD xxn1(1)n1y xn(1)n1yn-1-11n(n1)1(3)D 21110n(n1)0200234n121134512311n1nn112n3n2n2n1n1n11n1n1111111n
3、1n1n(n1)2111111n1n111n1n111111111n(n1)(1)(n2)(n3)21n111n211111n110011111n111n11(1)(n1)(n2)2n(n1)211111n111n00(1)1100n00n(1)(n1)(n2)2n(n1)2101nn(n1)2nn1n n2-2-习题二1.2.3.4.5(答案略)x6.设B B 11x21x12为与A A可交换的矩阵,则有ABAB BABAx22x12 x11x22x21x121 1x221 11 1 x11即1 1x21解之得x11 a,x12b,x21b,x22 a x1301 y17.(1)x2231y
4、2,记为X X=AYAYx012y33 y1 1y21y031 z 11,记为Y Y=BZBZz212 z 01z23 x1 3(2)X X=A ABZBZ=ABABZ Z即x25x138(答案略)345 9.f(A A)A A23A A 2E E 18101034110.(1)(A A B B)(A A B B)A A2 BABA ABAB B B2 A A2 B B2(2)(A A B B)2(A A B B)(A A B B)A A2 BABA ABAB B B2=A A22ABAB B B211.A A2 A A,A A 1(B B E E)2B B 2A A E E,B B2 4A
5、A24A A E E E E反之若B B2 E E,则4A A24A AO O,即A A2 A A12.(1)设A A (aij),A A2(bij)A AT A Aaij aji又A A2O Obii 0又bij ai1a1j ai2a2 j ainanj ai12 ai22-3-ain2(i,j 1,2,n)当ij 1,2,n时,有a11a12A0a1n0,a21a22a2n0,an1an2ann0(2)设A A(aij),AAAAT(bij)则bijai 1aj 1ai2aj2A ATA A0bij0(i,j 1,2,当ij时,有ai 12ai22故ai 1ai2ain0(i 1,2,n
6、)ainajnain20(i 1,2,n),n)即A A013.(1)(A ATA A)TA ATA AA ATA A为对称矩阵同理AAAAT也为对称矩阵(2)(A AA AT)TA ATA AA AA ATA AA AT为对称矩阵又(A AA AT)TA ATA A(A AA AT)A AA AT为反对称矩阵(3)A A1(A AA ATA AA AT)1(A AA AT)1(A AA AT)222由(2)知,1(A AA AT)为对称矩阵,1(A AA AT)为反对称矩阵22故A A可表示成一个对称矩阵与一个反对称矩阵的和。14.(1)必要性:A ATA A,B BTB B,(ABAB)T
7、ABABABAB(ABAB)TB BTA ATBABA充分性:A ATA A,B BTB B,ABABBABA(ABAB)T(BABA)TA ATB BTABAB (2)必要性:A A2E E,B B2E E,(ABAB)2E EBABAEBAEEBAEA A2BABBAB2A A(ABAB)2B BABAB充分性:A A2E E,B B2E E,ABABBABA(ABAB)2(ABAB)(ABAB)A A(BABA)B BA A2B B2E E(3)必要性:A A2A A,B B2B B,(A AB B)2A AB B(A AB B)2A A2ABABBABAB B2A ABABAABABB
8、 BA AB B-4-即ABABBABA充分性:A A2 A A,B B2 B B,ABAB BABA(A A B B)2 A A B B15(答案略)16.(E E A A)(E E A A A AE E A A可逆。且(E E A A)1 E E A A A A217.A Ak(A A1)k A AkA Ak A A A Ak1AAAA1A A1 E E A Ak1)E EA Ak可逆,且(A Ak)1(A A1)k18.(答案略)19.AAAA*A A E E,若A A可逆,则A A 01A AA A*E E故A A*可逆,且(A A*)1A AA AA A20.设A A (aij),A
9、 A是对称矩阵aij aji记A A*(Nij),则*A A1*N Nij,A A1为对称矩阵。ji,即A A为对称矩阵,又A AA A21.(1)设A A*(Nij),则(A A)*(1)n1Nij(1)n1A A*(2)AAAA*A A E EA A*A A A A1又(A A1)(A A1)*A A1E E(A A1)*A A1(A A1)1 A A-1-1A A于是A A*(A A1)*A A A A1A A1A A E E即(A A1)*(A A*)1(3)AAAA*A A E EA A*A A A A1于是(A A*)T A A(A A1)T A A(A AT)1 A AT(A A
10、T)1(A AT)*(4)(注意加条件:A A可逆)A A可逆A*A A A A1(A A*)*(A A A A1)*A An1(A A1)*A An1(A A*)1-5-A An1(A A A A1)1 A An2A A22.B C1ACBm(C1AC)(C1AC)23.24.(答案略)(C1AC)C1AmC25.A A23A A2E E 0A A1(A A3E E)E E2A A可逆,且A A11(A A3E E)226.P P1APAP A A P P P P1A A11(P P P P1)(P P P P1)(P P P P1)(P P 11P P1)141 14 1110 1又 P
11、P,P P3,1111110214 10 14 27312732A A11111311021168368427(答案略)28.C C A ACACAC C A A(E E A A)1又 B B E E ABABB B (E E A A)1故B B C C (E E A A)1 A A(E E A A)1(E E A A)(E E A A)1 E E29.(3A A)12A A*1A A12A A*311A A*2A A*12A A*3A A3 A A22 A A*4A A*33AAAA*A A E EA A A A*A A,A A*A A(3A A)2A A 431*nn1 162731223
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 线性代数 建平 习题 答案 详解 _ 复旦大学 出版社
限制150内