线段和差最值的存在性问题解题策略(共7页).doc
《线段和差最值的存在性问题解题策略(共7页).doc》由会员分享,可在线阅读,更多相关《线段和差最值的存在性问题解题策略(共7页).doc(7页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上中考数学压轴题解题策略 线段和差最值的存在性问题解题策略 2015年9月13日星期日 专题攻略两条动线段的和的最小值问题,常见的是典型的“牛喝水”问题,关键是指出一条对称轴“河流”(如图1)三条动线段的和的最小值问题,常见的是典型的“台球两次碰壁”或“光的两次反射”问题,关键是指出两条对称轴“反射镜面”(如图2)两条线段差的最大值问题,一般根据三角形的两边之差小于第三边,当三点共线时,两条线段差的最大值就是第三边的长如图3,PA与PB的差的最大值就是AB,此时点P在AB的延长线上,即P解决线段和差的最值问题,有时候求函数的最值更方便,本讲不涉及函数最值问题图1 图2
2、图3例题解析例 如图1-1,抛物线yx22x3与x轴交于A、B两点,与y轴交于点C,点P是抛物线对称轴上的一个动点,如果PAC的周长最小,求点P的坐标图1-1【解析】如图1-2,把抛物线的对称轴当作河流,点A与点B对称,连结BC,那么在PBC中,PBPC总是大于BC的如图1-3,当点P落在BC上时,PBPC最小,因此PAPC最小,PAC的周长也最小由yx22x3,可知OBOC3,OD1所以DBDP2,因此P(1,2)图1-2 图1-3例如图,抛物线与y轴交于点A,B是OA的中点一个动点G从点B出发,先经过x轴上的点M,再经过抛物线对称轴上的点N,然后返回到点A如果动点G走过的路程最短,请找出点
3、M、N的位置,并求最短路程图2-1【解析】如图2-2,按照“台球两次碰壁”的模型,作点A关于抛物线的对称轴对称的点A,作点B关于x轴对称的点B,连结AB与x轴交于点M,与抛物线的对称轴交于点N在RtAAB中,AA8,AB6,所以AB10,即点G走过的最短路程为10根据相似比可以计算得到OM,MH,NH1所以M(, 0),N(4, 1)图2-2例 如图3-1,抛物线与y轴交于点A,顶点为B点P是x轴上的一个动点,求线段PA与PB中较长的线段减去较短的线段的差的最小值与最大值,并求出相应的点P的坐标图3-1【解析】题目读起来像绕口令,其实就是求|PAPB|的最小值与最大值由抛物线的解析式可以得到A
4、(0, 2),B(3, 6)设P(x, 0)绝对值|PAPB|的最小值当然是0了,此时PAPB,点P在AB的垂直平分线上(如图3-2)解方程x222(x3)262,得此时P在PAB中,根据两边之差小于第三边,那么|PAPB|总是小于AB了如图3-3,当点P在BA的延长线上时,|PAPB|取得最大值,最大值AB5此时P图3-2 图3-3例 如图4-1,菱形ABCD中,AB2,A120,点P、Q、K分别为线段BC、CD、BD上的任意一点,求PKQK的最小值图4-1【解析】如图4-2,点Q关于直线BD的对称点为Q,在KPQ中,PKQK总是大于PQ的如图4-3,当点K落在PQ上时,PKQK的最小值为P
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 线段 差最值 存在 问题 解题 策略
限制150内