初中物理水的结晶课件试题.pdf
《初中物理水的结晶课件试题.pdf》由会员分享,可在线阅读,更多相关《初中物理水的结晶课件试题.pdf(9页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、chuzhong水的结晶水是地球上的重要物质,对于生命来说尤其重要。水有很多特殊的性质,例如水结成冰后体积不但不减小反而增大,水在4C 时密度最大,水的比热和汽化热等都比一般物质大,等等。这些现象都与水分子间的相互作用,即成键情况有密切的关系,下面就此问题作些浅显的讨论。图1 冰Ih的结构示意水分子是极性分子,两个HO 键成1045角。水分子间的相互作用力是范德瓦耳斯力,但相互作用方式有其特殊性。当它结成晶体(即冰)时,一个水分子的氢原子与另一个水分子的氧原子相互吸引,组成一种特殊的晶体结构,如图1所示。图中大圆圈表示氧原子,小圆圈表示氢原子,在这里,每一个氢原子一端与氧原子组成共价键(用短实
2、线表示),而另一端则与另一个水分子中的氧原子靠范德瓦耳斯力连接,它们之间的键合方式称为“氢键”,在图中用虚线表示。由于氢键本质上仍是范德瓦耳斯力,它的强度远比另一端的共价键要弱wulichuzhong得多,因此氢原子并不处于两个氧原子的正中,而是靠氢键连接的两个原子距离较远,在图中虚线画得都比实线长,就是表示这个信息。冰的晶体属六角晶系,它是一种比较特殊的晶体结构,每一个水分子都与另外三个水分子相连接(每一个水分子的两个氢原子分别与另两个水分子的氧原子连接,而它的氧原子则与第三个水分子的某一个氢原子连接),由于氢键的特殊方向性,使得冰的晶体结构内部很“空旷”,远不如金属晶体那样密集,因此在水结
3、成冰的过程中,体积不是像大多数物质那样缩小,反而要胀大,即冰的密度比液态水的密度要小。当冰在0C 时吸热熔化成水后,水中的氢键结构只有约15%断裂,其余85%仍然保留。但这15%的氢键解体,就使得体积明显缩小(约缩小1/10)。当水的温度逐渐升高时,水中的氢键结构逐渐解体,到20C时水中的氢键约还有一半,到了100C沸点时,水中仍有约20%的氢键结构存在。随着温度的逐渐升高,一方面是氢键结构的解体,它造成水的体积缩小,而另一方面热膨胀现象又造成水的体积胀大,这两种因素都在起作用。从0C 开始升温的初始阶段,氢键的解体起主要作用,因此水的体积随温度的升高而减小,在4C时体积变得最小而密度最大,4
4、C 以后,温度再升高,起主要作用的就是热膨胀了,因此从4C 以后,水也像大多数物质一样热胀冷缩。氢键虽然本质上是范德瓦耳斯力,但比一般的范德瓦耳斯键要强一些。冰在升华直接变成水蒸气的过程中,要吸收热量,称为升华热,吸收的热量中的大部分是使氢键解体,小部分则是克服一般范德瓦耳wulichuzhong斯键的作用,前者约占3/4,后者只占1/4。具体地说,在0C 时冰的升华热约是510 kJ/mol,其中瓦解氢键需要376 kJ/mol,其余134 kJ/mol 则是克服一般范德瓦耳斯键所需的能量。正因为水在温度升高的过程中,氢键要逐渐解体,而瓦解氢键需要较大的能量,因此水的比热比一般物质都大。水的
5、汽化热和升华热也比一般物质要大,其原因也是因为需要克服氢键的作用。氢键在生命过程中起着重要作用,具体地体现在液态水身上。水是生命的重要源泉,前面说到的水的几个特性,对于生命都极为重要。水有较大的比热和汽化热,使得水成为地球上的热量调节库。我们地球的日夜温度变化和季节温度变化都是较小的,这对于生命的生长发育极为有利;水在4C 时密度最大,在4C 以下继续冷却以至结冰的过程中,体积要膨胀,对流现象停止,这使得江河湖海在冬天结冰时,从上表面开始结冰,而底层的水则仍然保持4C 的温度不变,这样水中的动、植物都不会被冻死。水的这一切特性,都与氢键有关,这正是我们说氢键在生命过程中起着重要作用的原因。一般
6、说来,任何一种物质,在温度、压强等发生变化时,都会呈现不同的物态,研究物态变化对于深入了解物质的结构及性质,对于研制新材料及新物质,都具有很大的现实意义。wulichuzhong熔化和凝固熔化和凝固物质由固相转变为液相,叫做熔化熔化;由液相转变为固相,叫做凝凝固固。在一定的压强下,晶体要升高到一定温度才发生熔化,这个温度叫做熔点,其相反过程即由液相转变为固相的温度叫做凝固点凝固点。在熔化或凝固过程中,虽然温度保持不变,但要吸收或放出相变潜热。单位质量某种物质熔化成同温度液体时吸收的热量,叫做熔化热熔化热;相反过程放出的热量,叫做凝固热凝固热;熔化热等于凝固热。在熔化和凝固的过程中既有固相,也有
7、液相,加热则向液相转变,放热则向固相转变。因此,熔点(凝固点)就是在一定压强下固液两相平衡共存的温度。晶体具有一定熔点,决定于晶体具有远程有序的点阵结构,破坏这种结构所需的能量是一定的。当温度升到一定数值,平均热运动能达到晶体的结合能时,一处的结构能够被解离(熔化),另一处在同一温度下同样能够被解离,这个温度就是熔点。非晶体不具有远程有序的特点,只具有近程有序的微观结构,破坏不同的微观结构需要不同的能量,因而表现为随温度升高而逐渐软化和熔化。熔化时所需的熔化热主要用于破坏晶体的点阵结构,因此熔化热可以用来衡量晶体结合能的大小。wulichuzhong晶体的凝固与熔化构成晶体的物质微粒是按一定的
8、规则排列的,这些物质微粒在一定的位置附近做无规则振动,一般不能改变其平衡位置,因此它们都具有一定的体积和一定的形状。晶体物质吸热温度升高,物质微粒的无规则振动加剧。到一定程度(温度达到熔点),再继续吸收热量,物质微粒的能量能够克服相互间的作用力而离开各自的平衡位置,空间点阵开始解体,这就是熔化。反过来,液体向外放热而温度降低,物质微粒的无规则振动减弱,到一定程度,相互间的作用力将把它们束缚在一定的平衡位置上,使得它们不再能随意移动,这些物质微粒将重新按一定的规则排列起来,这就是凝固,更准确地说这就是晶体的结晶过程。熔化需要吸收能量(吸热),而凝固需要放出能量(放热),从这点来说,熔化与凝固确是
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 初中 物理 结晶 课件 试题
限制150内