《高一数学三角函数测试题.pdf》由会员分享,可在线阅读,更多相关《高一数学三角函数测试题.pdf(8页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、高 一 数 学 三 角 函 数 测 试 题(附 答案)(共 7 页)-本页仅作为预览文档封面,使用时请删除本页-新课标必修新课标必修 4 4 三角函数测试题三角函数测试题一选择题:本大题共 12 小题,每小题 5 分,共 60 分。1 tan1501.化简等于()01 tan15A.3B.32C.3D.12.在ABCD 中,设AB a,AD b,AC c,BD d,则下列等式中不正确的是()Aab cBab d Cba dDcd 2a223.在ABC中,sin(A+B)+sinC;cos(B+C)+cosA;tanA BtanC;cosBCAsec,其中恒为定值的是()22 A、B、C、D、4
2、.已知函数 f(x)=sin(x+()),g(x)=cos(x),则下列结论中正确的是22A函数 y=f(x)g(x)的最小正周期为 2B函数 y=f(x)g(x)的最大值为 1C将函数 y=f(x)的图象向左平移单位后得 g(x)的图象2D将函数y=f(x)的图象向右平移单位后得g(x)的图象25.下列函数中,最小正周期为,且图象关于直线x 3636对称的是()Ay sin(2x)By sin(2x)Cy sin(2x)Dy sin(x)266.函数y cos2x sin x的值域是()A、1,1D、1,54 B、1,54 C、0,201cos500则有()7.设a 1cos603sin 6
3、0,b 2tan13,c,20221 tan 132Aa b cD.a c bB.a b cC.b c a-2-8.已知 sin()3,是第二象限的角,且 tan()=1,则 tan的值为5B7CA7D34349.定义在 R 上的函数f(x)既是偶函数又是周期函数,若f(x)的最小正周期是5,且当x0,时,f(x)sin x,则f()的值为()32A.12B32C3 D21210.函数y A1cosx的周期是()sin xBC22D411.2002 年 8 月,在北京召开的国际数学家大会会标如图所示,它是由 4个相同的直角三角形与中间的小正方形拼成的一大正方形,若直角三角形中较小的锐角为,大正
4、方形的面积是 1,小正方形的面积是1,则sin2cos2的值等于()25A1B24 C7 D725252512.使函数 f(x)=sin(2x+)+3cos(2x)是奇函数,且在0,上是减函4数的的一个值()45 AB2 C D3333二填空题:本大题共 4 小题,每小题 4 分,共 16 分。13、函数y asin x1的最大值是 3,则它的最小值_14、若ab ab,则a、b的关系是_15、若函数 f()是偶函数,且当0 时,有 f()=cos3+sin2,则当0 时,f()的表达式为.16、给出下列命题:(1)存在实数 x,使 sinx+cosx;(2)若,是锐角ABC327的内角,则s
5、incos;(3)函数 ysin(x-)是偶函数;(4)函数 y32-3-sin2x 的图象向右平移个单位,得到 ysin(2x+)的图象.其中正确的命44题的序号是 .三、解答题(本大题 6 小题,共 74 分,解答应写出文字说明,证明过程或演算步骤)17、(12 分)求值:2sin500sin800(13tan100)1cos10018、(12 分)已知sin的值.35,0tan 250/sin 2501/cos 2501 tan260sin2508.解:sintan31tan4343,是第二象限的角,3tan tantan,又tan1541tantan1 tan 7 9.解:由已知得:f
6、(5)f(2)f()f()sin33333322x x1 12sinsin10.解:1cos x22 tanxT 2y xxx1sin x22sincoscos222211.解:cossin2cossin24,2111 cossin,又0,cossin252525425sin2cos2sincossincos sincos1124712sincos 1 55252515 12.解:f(x)=sin(2x+)+3cos(2x)2cos(2 x又f(x)在0,上是减函数 当是奇函数,f(x)=0 知 A、C 错误;)3423时 f(x)=-sin2x 成立。-5-二填空题:本大题共 4 小题,每小
7、题 4 分,共 16 分。13、解:函数14、解:y asin x1的最大值是 3,3 a1 a 2,ymin 211 1a、b的关系是:abab ab15、函数 f()是偶函数,且当0 时,有 f()=cos3+sin2,则当0 时,f()的表达式为:fx fxcos3xsin2xcos3xsin2x16、解:(1)sin xcos x 2sinx2,2成立;(2)锐角43ABC中22 sinsin sin2cos成立(3)7 2 2y sinx sinx 422332cosx是偶函数成立;(4)y sin2x的图象右移个单位为y sin 2x sin2x,3442与 ysin(2x+三解答
8、题000002sin 5002cos5002sin50 cos10 3sin102sin50 2sin 4017、解:原式=0002cos52cos52cos5)的图象不同;故其中正确的命题的序号是:(1)、(2)、(3)42 2sin5004502cos502 2sin9502 2cos50 2002cos52cos518、解:,且tan2 343sin,cos;,55420,225,512,又cos(),0sin()1 1321313sin sin sin()coscos()sin 19、解:(1)12453631351356512,2x2k,2kkZsin2x0,1sin2x0,2fx定
9、义域为k,k,k Zx,k,k,k Z时,sin2x0122-6-1111即值域为设f x1,t sin2x,sin2x0,log1sin2x1,222221t0,则21y log1t;y log1t单减 为使fx单增,则只需取t 1sin2x,t0,2222的单减区间,2x 2k,2kk Z故2上是增函数。fx在k,kk Z42(2)数。不关于原点对称,fx既不是奇函数也不是偶函fx定义域为k,k,k Z2(3)log1sin2x log 1sin2x112222fx是周期函数,周期T.x sin xcos2()sin xcos x20、解:423sinx23sinx2sin x3sinxf
10、(x)xx224sinx24sin4sin222xxx4sincosxxx 2sin()223sin cos3sin26x2224sin2x2x(kZ)时,f(x)max 2.)max1得 2k 即x 4k 2623262故f(x)取得最大值时x的集合为:x x 4k(kZ)3221、解:(1)fx asinxbcosx a2b2sin(x),又周期T 2由sin(a2b2 4 a 2对一切 xR,都有 f(x)f()4解得:12b 2 3asinbcos 266fx的解析式为fx 2sinx2 3cosx(2)gx f(22 x)4sin2(x)4sin(2 x)4sin(2x)63336得
11、 g(x)的2)的减区间由2k 2x 2 2k33232713(k Z)5增区间为k(等价于k,k,k.g(x)的增区间是函数 y=sin(2x 121212121sin x 022、解:fx的定义域为R 1sin x 0fx 1sinx 1sinx 1sinx 1sinx fxf(x)为偶函数;-7-f(x+)=f(x),f(x)是周期为的周期函数;f(x)sinxcosx sinxcosx|sinxcosx|sinxcosx|当x0,时22222222222xxfx 2cos;当x,时fx 2sin222(或当x0,当x0,x时 f(x)=(1sin x 1sin x)22 2|cosx|2cos)22时fx单减;当x,时fx单增;又fx是周期为的偶函数22f(x)的单调性为:在k 当x0,2,k上单增,在k,k上单减。2xx;当x,时fx 2sin2,时fx 2cos2,222222fx的值域为:2,2由以上性质可得:fx在,上的图象如上图所示:-8-
限制150内