全等三角形中做辅助线总结.pdf
《全等三角形中做辅助线总结.pdf》由会员分享,可在线阅读,更多相关《全等三角形中做辅助线总结.pdf(32页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、全等三角形中做辅助线技巧要点大汇总全等三角形中做辅助线技巧要点大汇总口诀:三角形三角形图中有角平分线,可向两边作垂线。也可将图对折看,对称以后关系现。角平分线平行线,等腰三角形来添。角平分线加垂线,三线合一试试看。线段垂直平分线,常向两端把线连。线段和差及倍半,延长缩短可试验。线段和差不等式,移到同一三角去。三角形中两中点,连接则成中位线。!三角形中有中线,延长中线等中线。一、由角平分线想到的辅助线一、由角平分线想到的辅助线口诀:图中有角平分线,可向两边作垂线。也可将图对折看,对称以后关系现。图中有角平分线,可向两边作垂线。也可将图对折看,对称以后关系现。角平分线平行线,等腰三角形来添。角平分
2、线加垂线,三线合一试试看。角平分线平行线,等腰三角形来添。角平分线加垂线,三线合一试试看。角平分线具有两条性质:a、对称性;b、角平分线上的点到角两边的距离相等。对于有角平分线的辅助线的作法,一般有两种。从角平分线上一点向两边作垂线;利用角平分线,构造对称图形(如作法是在一侧的长边上截取短边)。通常情况下,出现了直角或是垂直等条件时,一般考虑作垂线;其它情况下考虑构造对称图形。至于选取哪种方法,要结合题目图形和已知条件。,与角有关的辅助线与角有关的辅助线E(一)(一)、截取构全等、截取构全等如图 1-1,AOC=BOC,如取 OE=OF,并连接 DE、DF,则有OEDOFD,从而为我们证明线段
3、、角相等创造了条件。OFAADC图 1-1EBDBFC图1-2例例1 1 如图 12,AB/CD,BE 平分BCD,CE 平分BCD,点 E 在 AD 上,求证:BC=AB+CD。例例2 2 已知:如图 13,AB=2AC,BAD=CAD,DA=DB,求证 DCAC例例3 3 已知:如图 14,在ABC 中,C=2B,AD 平分BAC,求证:ABAC=CD分析分析:此题的条件中还有角的平分线,在证明中还要用到构造全等三角形,此题还是证明线段的和差倍分问题。用到的是截取法来证明的,在长的线段上截取短的线段,来证明。试试看可否把短的延长来证明呢?练习1已知在ABC 中,AD 平分BAC,BCBDE
4、A图1-4=2C,求证:AB+BD=AC23(已知:在ABC 中,CAB=2B,AE 平分CAB 交 BC 于 E,AB=2AC,求证:AE=2CE4已知:在ABC 中,ABAC,AD 为BAC 的平分线,M 为 AD 上任一点。求证:BM-CMAB-AC。5已知:D 是ABC 的BAC 的外角的平分线 AD 上的任一点,连接DB、DC。求证:BD+CDAB+AC。(二)(二)、角分线上点向角两边作垂线构全等、角分线上点向角两边作垂线构全等过角平分线上一点向角两边作垂线,利用角平分线上的点到两边距离相等的性质来证明问题。A例例1 1 如图 2-1,已知 ABAD,BAC=FAC,CD=BC。D
5、求证:ADC+B=180EBCF分析分析:可由 C 向BAD 的两边作垂线。近而证ADC与B 之和为平角。图2-1例例2 2 如图 2-2,在ABC 中,A=90,AB=AC,ABD=CBD。求证:BC=AB+AD分析分析:过 D 作 DEBC 于 E,则 AD=DE=CE,则构造出全等三角形,从而得证。此题是证明线段的和差倍分问题,从中利用了相当于截取的方法。例例3 3 已知如图 2-3,ABC 的角平分线 BM、CN 相交于点P。求证:BAC 的平分线也经过点 P。BNDPMFCABECAD图2-2图2-3】分析分析:连接 AP,证 AP 平分BAC 即可,也就是证 P 到 AB、AC 的
6、距离相等。练习:练习:1如图 2-4AOP=BOP=15,PC/OA,PDOBCPODAA,如果 PC=4,则 PD=()A 4 B 3 C 2 D 1图2-42已知在ABC 中,C=90,AD 平分CAB,CD=1.5,DB=2.5.求 AC。3已知:如图 2-5,BAC=CAD,ABAD,CEAB,1AE=2(AB+AD).求证:D+B=180。BAECD4.已知:如图2-6,在正方形 ABCD 中,E 为 CD 的中点,F 为 BC上的点,FAE=DAE。求证:AF=AD+CF。6图2-5已知:如图 2-7,在 RtABC 中,ACB=90,CDAB,垂足为 D,AE 平分CAB 交 C
7、D 于 F,过 F 作 FH/AB 交 BC 于 H。求证 CF=BH。ADCEEFADHBB图2-6FC图2-7(三)(三):作角平分线的垂线构造等腰三角形:作角平分线的垂线构造等腰三角形从角的一边上的一点作角平分线的垂线,使之与角的两边相交,则截得一个等腰三角形,垂足为底边上的中点,该角平分线又成为底边上的中线和高,以利用中位线的性质与等腰三角形的三线合一的性质。(如果题目中有垂直于角平分线的线段,则延长该线段与角的另一边相交)。例例1 1 已知:如图 3-1,BAD=DAC,ABAC,CDAD 于 D,H 是 BC 中点。求证:DH=1(AB-AC)2EBHA分析分析:延长CD 交 AB
8、 于点 E,则可得全等三角形。问题可证。例例2 2 已知:如图 3-2,AB=AC,BAC=90,AD 为ABC 的平分线,CEBE.求证:BD=2CE。DC图示3-1FAED例例 3 3已知:如图 3-3 在ABC 中,AD、AE 分别BACB图3-2C的内、外角平分线,过顶点 B 作 BFAD,交 AD 的延长线A于 F,连结 FC 并延长交 AE 于 M。求证:AM=ME。分析分析:由 AD、AE 是BAC 内外角平分线,可得 EAAF,从而有 BF/AE,所以想到利用比例线段证相等。BFNDCME图3-3例例4 4 已知:如图 3-4,在ABC 中,AD 平分BAC,AD=AB,CMA
9、D 交 AD延长线于 M。求证:AM=1(AB+AC)2分析分析:题设中给出了角平分线AD,自然想到以 AD 为轴作对称变换,作AB1D 关于 AD 的对称AED,然后只需证 DM=EC,另外21由求证的结果 AM=(AB+AC),即 2AM=AB+AC,也可2AEFBDMnC尝试作ACM 关于 CM 的对称FCM,然后只需证 DF=CF 即可。图3-4练习练习:1 1已知:在ABC 中,AB=5,AC=3,D 是 BC 中点,AE 是BAC 的平分线,且 CEAE 于 E,连接 DE,求 DE。】2 2已知 BE、BF 分别是ABC 的ABC 的内角与外角的平分线,AFBF1BC2于 F,A
10、EBE 于 E,连接 EF 分别交 AB、AC 于 M、N,求证 MN=(四)(四)、以角分线上一点做角的另一边的平行线、以角分线上一点做角的另一边的平行线。有角平分线时,常过角平分线上的一点作角的一边的平行线,从而构造等腰三角形。或通过一边上的点作角平分线的平行线与另外一边的反向延长线相交,从而也构造等腰三角形。如图 4-1 和图 4-2 所示。CHDEAFGBBCAI图4-1图4-2例 4如图,ABAC,1=2,求证:ABACBDCD。AC12、B例 5如图,BCBA,BD 平分ABC,且 AD=CD,求证:A+C=180。A;BDC例 6如图,ABCD,AE、DE 分别平分BAD 各AD
11、E,求证:AD=AB+CD。,DCE练习:练习:1.已知,如图,C=2A,AC=2BC。求证:ABC 是直角三角形。ABACB2已知:如图,AB=2AC,1=2,DA=DB,求证:DCACA;1 2CDB3已知 CE、AD 是ABC 的角平分线,B=60,求证:AC=AE+CDE】ABDC4已知:如图在ABC 中,A=90,AB=AC,BD 是ABC 的平分线,求证:BC=AB+AD、ADBC二、二、由线段和差想到的辅助线由线段和差想到的辅助线口诀:口诀:线段和差及倍半,延长缩短可试验。线段和差不等式,移到同一三角去。遇到求证一条线段等于另两条线段之和时,一般方法是截长补短法:1、截长:在长线
12、段中截取一段等于另两条中的一条,然后证明剩下部分等于另一条;2、补短:将一条短线段延长,延长部分等于另一条短线段,然后证明新线段等于长线段。BD+DE+CE.证明:证明:(法一)(法一)将 DE 两边延长分别交 AB、AC 于 M、N,在AMN 中,AM+ANMD+DE+NE;(1)在BDM 中,MB+MDBD;(2)在CEN 中,CN+NECE;(3)%AMDENCB图11由(1)+(2)+(3)得:AM+AN+MB+MD+CN+NEMD+DE+NE+BD+CEAB+ACBD+DE+EC(法二:图(法二:图 1-21-2)延长 BD 交 AC 于 F,廷长CE 交 BF 于 G,在ABF 和
13、DBGAFECGFC 和GDE 中有:AB+AFBD+DG+GF(三角形两边之和大于第三边)(1)GF+FCGE+CE(同上)(2)DG+GEDE(同上)(3)图1 2AG由(1)+(2)+(3)得:AB+AF+GF+FC+DG+GEBD+DG+GF+GE+CE+DEAB+ACBD+DE+EC。BEDF图2 1C二、在利用三角形的外角大于任何和它不相邻的内角时如直接证不出来时,可连接两点或延长某边,构造三角形,使求证的大角在某个三角形的外角的位置上,小角处于这个三角形的内角位置上,再利用外角定理:例如:如图2-1:已知D为ABC内的任一点,求证:BDCBAC。分析:分析:因为BDC 与BAC
14、不在同个三角形中,没有直接的联系,可适当添加辅助线构造新的三角形,使BDC 处于在外角的位置,BAC 处于在内角的位置;证法一证法一:延长 BD 交 AC 于点 E,这时BDC 是EDC 的外角,BDCDEC,同理DECBAC,BDCBAC证法二:连接 AD,并廷长交 BC 于 F,这时BDF 是ABD 的外角,BDFBAD,同理,CDFCAD,BDF+CDFBAD+CAD,即:BDCBAC。注意:利用三角形外角定理证明不等关系时,通常将大角放在某三角形的外角位置上,小角放在这个三角形的内角位置上,再利用不等式性质证明。三、三、有角平分线时,通常在角的两边截取相等的线段,构造全等三角形,如:A
15、N例如:如图3-1:已知AD为ABC的中线,且1=2,3=4,求证:BE+CFEF。分析:要证 BE+CFEF,可利用三角形三边关系定理证明,须把 BE,CF,EF 移到同一个三角形中,而由已知1=2,BE2314D图31FC3=4,可在角的两边截取相等的线段,利用三角形全等对应边相等,把EN,FN,EF 移到同个三角形中。证明:证明:在 DN 上截取 DN=DB,连接 NE,NF,则 DN=DC,在DBE 和NDE 中:DN=DB(辅助线作法)1=2(已知)ED=ED(公共边)DBENDE(SAS)BE=NE(全等三角形对应边相等)同理可得:CF=NF&在EFN 中 EN+FNEF(三角形两
16、边之和大于第三边)BE+CFEF。注意:当证题有角平分线时,常可考虑在角的两边截取相等的线段,构造全等三角形,然后用全等三角形的对应性质得到相等元素。三、截长补短法作辅助线。例如:已知如图 6-1:在ABC 中,ABAC,1=2,P 为 AD 上任一点求证:AB-ACPB-PC。分析:要证:AB-ACPB-PC,想到利用三角形三边关系,定理证之,因为欲证的线段之差,故用两边之差小于第三边,从而想到构造第三边AB-AC,故可在 AB 上截取 AN 等于 AC,得 AB-AC=BN,再连接 PN,则 PC=PN,又在PNB 中,PB-PNPB-PC。!证明:(截长法)在 AB 上截取 AN=AC
17、连接 PN,在APN 和APC 中AN=AC(辅助线作法)1=2(已知)AP=AP(公共边)APNAPC(SAS),PC=PN(全等三角形对应边相等)在BPN 中,有 PB-PNBN(三角形两边之差小于第三边)BP-PCPM-PC(三角形两边之差小于第三边)AB-ACPB-PC。例 1如图,AC 平分BAD,CEAB,且B+D=180,求证:AE=AD+BE。AD&例 2 如图,在四边形 ABCD 中,AC 平分BAD,CEAB 于 E,AD+AB=2AE,求证:ADC+B=180EBCDCAEB例 3 已知:如图,等腰三角形 ABC 中,AB=AC,A=108,BD 平分ABC。求证:BC=
18、AB+DC。DCBA例 4 如图,已知 RtABC 中,ACB=90,AD 是CAB 的平分线,DMAB1于 M,且 AM=MB。求证:CD=2DB。AM【夯实基础夯实基础】C例:ABC中,AD 是BAC的平分线,且 BD=CD,求证 AB=AC方法 1:作 DEAB 于 E,作 DFAC 于 F,证明二次全等方法 2:辅助线同上,利用面积)(BDAC方法 3:倍长中线 ADBD【方法精讲方法精讲】常用辅助线添加方法倍长中线常用辅助线添加方法倍长中线AAABC 中方式 1:延长 AD 到 E,AD 是 BC 边中线使 DE=AD,连接 BEBCBCDD方式 2:间接倍长EAA作 CFAD 于
19、F,延长 MD 到 N,F作 BEAD 的延长线于 E使 DN=MD,M连接 BE连接 CDCBDDCBEN【经典例题经典例题】例 1:ABC 中,AB=5,AC=3,求中线 AD 的取值范围提示:画出图形,倍长中线AD,利用三角形两边之和大于第三边例 2:已知在ABC 中,AB=AC,D 在 AB 上,E 在 AC 的延长线上,DE 交 BC 于 F,且ADF=EF,求证:BD=CEBDCEF方法 1:过 D 作 DGAE 交 BC 于 G,证明DGFCEF方法 2:过 E 作 EGAB 交 BC 的延长线于 G,证明EFGDFB方法 3:过 D 作 DGBC 于 G,过 E 作 EHBC
20、的延长线于 H证明BDGECH例 3:已知在ABC 中,AD 是 BC 边上的中线,E 是 AD 上一点,且 BE=AC,延长 BE 交AAC 于 F,求证:AF=EFFE提示:倍长 AD 至 G,连接 BG,证明BDGCDA三角形 BEG 是等腰三角形BCD。例 4:已知:如图,在ABC中,AB AC,D、E 在 BC 上,且 DE=EC,过 D 作DF/BA交 AE 于点 F,DF=AC.求证:AE 平分BAC提示:方法 1:倍长 AE 至 G,连结 DG?AFBDEC第 1 题图方法 2:倍长 FE 至 H,连结 CH例 5:已知 CD=AB,BDA=BAD,AE 是ABD 的中线,求证
21、:C=BAEA&提示:倍长 AE 至 F,连结 DFBC证明ABEFDE(SAS)ED进而证明ADFADC(SAS)【融会贯通】1、在四边形 ABCD 中,ABDC,E 为 BC 边的中点,BAE=EAF,AF 与 DC 的延长线相交于点 F。试探究线段 AB 与 AF、CF 之间的数量关系,并证明你的结论!提示:延长 AE、DF 交于 G证明 AB=GC、AF=GF所以 AB=AF+FC&ADBEFC2、如图,AD 为ABC的中线,DE 平分BDA交 AB 于 E,DF 平分ADC交 AC 于 F.求证:BE CF EF提示:方法 1:在 DA 上截取 DG=BD,连结 EG、FG证明BDE
22、GDEDCFDGF所以 BE=EG、CF=FG%利用三角形两边之和大于第三边方法 2:倍长 ED 至 H,连结 CH、FH证明 FH=EF、CH=BE利用三角形两边之和大于第三边EAFCBD第 14 题图3、已知:如图,ABC 中,C=90,CMAB 于 M,AT 平分BAC 交 CM 于 D,交 BC于 T,过 D 作 DE/AB 交 BC 于 E,求证:CT=BE.-提示:过 T 作 TNAB 于 N证明BTNECDA AD DMMB BE ET TC C1如图,ABCD,AE、DE 分别平分BAD 各ADE,求证:AD=AB+CD。AB(CDE,2.如图,ABC 中,BAC=90,AB=
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 全等 三角形 辅助线 总结
限制150内