八年级数学上册7.1为什么要证明拓展资源哥德巴赫猜想素材北师大版(2021-2022学年).pdf
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_05.gif)
《八年级数学上册7.1为什么要证明拓展资源哥德巴赫猜想素材北师大版(2021-2022学年).pdf》由会员分享,可在线阅读,更多相关《八年级数学上册7.1为什么要证明拓展资源哥德巴赫猜想素材北师大版(2021-2022学年).pdf(5页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、哥德巴赫猜想哥德巴赫猜想两百多年前,彼得堡科学院院士哥德巴赫曾研究过“将一个数表示成几个素数的和”的问题,他取了很 多数做试验,想把它们分解成几个素数的和,结果得到一个断语:“总可将任何一个数分解成不超过三个素数之和.但是哥德巴赫不能证明这个问题,甚至 连如何证明的方法也没有,于是他写信给另一名彼得堡科学院院士、著名数学家欧拉,他在 1742 年 6 月日的信中写道:“我想冒险发表下列假定大于 5 的任何数都是三个素数的和.这就是后来举世闻名的哥德巴赫猜想.同年 6 月日,欧拉在给哥德巴赫的回信中说:“我认为每一个偶数都是两个素数之和,虽然我还不能证明它,但我确信这个论断是完全正确的”这两个数
2、学家的通信内容传播出来之后,人们就称这个猜想为哥德巴赫猜想或者哥德巴赫-欧拉猜想完整地说,哥德巴赫猜想是:大于 1 的任何数都是三个素数的和后来,人们把它归纳为:命题 A:每一个大于或者等于 6 的偶数,都可以表示为 两个奇素数的和;命题 B:每一个大于或者 等于 9 的奇数,都可以表示为三个奇素数的和.例如例如:50=9+31;=+13+;52=3+29;53+9+31.或 50=3+47=+3=13+7=1+3等1900 年,著名数学家希尔伯特在巴黎国际数学家会议上提出了国际数学要研究的个题目(后被称为希尔伯特问题),其中哥德巴赫猜想命题 A 与另外两个有关问题一起,被概括成希尔伯特第 8
3、问题.这是著名的世界难题.112 年,第五届国际数学 家会议上,著名数论大师兰道发言说,有四个数论上的问题是当时的科学水平不能解决的,其中一个是哥德巴赫猜想,即使把它改为较弱的命题:不论是不超过 3 个,还是不超过 30 个,只要证明存在着这样的正数 C,而能使每一个大于或等于 2 的整数,都可以表示为不超过个素数之和”(称为命题 C),也是当代数学 家力所不能及的.1921 年,著名数论大师哈代,在哥本哈根召开的国际数学会议上说,哥德巴赫猜想的困难程度,可以与任何没有解决的数学问题相比,是极其困难的,但 是他没有说是不可能的.事情出乎意料,哥 德巴赫猜想问题的解决出现了一些转机,坚不可摧的哥
4、德巴赫堡垒正在逐个被攻破.930 年,25 岁的苏联数学家列夫格里高维奇西涅日尔曼(951938),用他创造的“正密率法”证明了兰道认为当代数学家力所不能及的命题 C,还估算出这个数 C 不会超过 S,并算出 S80000.人们称 S 为西涅日尔曼常数这是哥德巴赫猜想的第一个重大突破,可惜这位天才数学家只活了3 岁1930 年以后,数学家兰道、罗曼诺夫、赫力邦、李奇等对西涅日尔曼方法作了最准确的分析,竞相缩小 S 的估值,到 137 年,得到 S67,又是一大进步.重要的是,不论一个数是多么大,都可将它分解成素数的和的问题已被证明了,如对于数83042000000000000000或者对于我们
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 八年 级数 上册 7.1 为什么 证明 拓展 资源 哥德巴赫 猜想 素材 北师大 2021 2022 学年
![提示](https://www.taowenge.com/images/bang_tan.gif)
链接地址:https://www.taowenge.com/p-72085415.html
限制150内