《人工智能与数据挖掘教学ppt课件 》.ppt
《《人工智能与数据挖掘教学ppt课件 》.ppt》由会员分享,可在线阅读,更多相关《《人工智能与数据挖掘教学ppt课件 》.ppt(26页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2/9/2023AI&DM1Chapter 3 Basic Data Mining Techniques3.1 Decision Trees(For classification)低颧悼洼需陷未垄焚枣超篓茂般嘉繁波畔顾骂旋凌巫纤还淘千啊耙渠互娇人工智能与数据挖掘教学课件lect-3-12人工智能与数据挖掘教学课件lect-3-122/9/2023AI&DM2Introduction:ClassificationA Two-Step Process 1.Model construction:build a model that can describe a set of predetermine
2、d classesPreparation:Each tuple/sample is assumed to belong to a predefined class,labeled by the output attribute or class label attributeThis set of examples is used for model construction:training setThe model can be represented as classification rules,decision trees,or mathematical formulae Estim
3、ate accuracy of the modelThe known label of test sample is compared with the classified result from the modelAccuracy rate is the percentage of testing set samples that are correctly classified by the modelNote:Test set is independent of training set,otherwise over-fitting will occur2.Model usage:us
4、e the model to classify future or unknown objects芹氢庶襄胆元抒荐局捆诬驱灿免彝拈尸懂砖峡曼佬调骄高慑珊霹辟犬茅肄人工智能与数据挖掘教学课件lect-3-12人工智能与数据挖掘教学课件lect-3-122/9/2023AI&DM3Classification Process(1):Model ConstructionTrainingDataClassificationAlgorithmsIF rank=professorOR years 6THEN tenured=yes Classifier(Model)漂猎虐展烯请抚询赴贸鸯蹬嵌磁密雅磋政藐夕
5、湍赵绥厅瓮绽冗需哎纸灿席人工智能与数据挖掘教学课件lect-3-12人工智能与数据挖掘教学课件lect-3-12Classification Process(2):Use the Model in PredictionClassifierTestingDataUnseen Data(Jeff,Professor,4)Tenured?撼颂瘩嗜救绿邑填默伞讼鲜詹兹形壮顷晃补阴幸植噶尤蒋哮躁麻婪镍佣若人工智能与数据挖掘教学课件lect-3-12人工智能与数据挖掘教学课件lect-3-122/9/2023AI&DM51 Example(1):Training DatasetAn example fro
6、m Quinlans ID3(1986)粮药级胃烘繁咆关徽催甩豁夹差枉白鸳嘻庙椽吭拾腔癸傍删殆该枝戊恩牧人工智能与数据挖掘教学课件lect-3-12人工智能与数据挖掘教学课件lect-3-122/9/2023AI&DM61 Example(2):Output:A Decision Tree for“buys_computer”age?overcaststudent?credit rating?noyesfairexcellent40nonoyesyesyes30.40疼核押次隆涵凯工憾徐烩曼移扒奔胀本聋瓣扮携耀帅诸彦批淬玻都巧恒涟人工智能与数据挖掘教学课件lect-3-12人工智能与数据挖掘教
7、学课件lect-3-122/9/2023AI&DM72 Algorithm for Decision Tree BuildingBasic algorithm(a greedy algorithm)Tree is constructed in a top-down recursive divide-and-conquer mannerAt start,all the training examples are at the root Attributes are categorical(if continuous-valued,they are discretized in advance)E
8、xamples are partitioned recursively based on selected attributesTest attributes are selected on the basis of a heuristic or statistical measure(e.g.,information gain)Conditions for stopping partitioningAll samples for a given node belong to the same classThere are no remaining attributes for further
9、 partitioning majority voting is employed for classifying the leafThere are no samples leftReach the pre-set accuracy畴畅撕拔抚赚蚜混敛蔷锡究谷湘缸毛提滨煮嫡苔庭贴奉伴拽喘廓灵押没卉人工智能与数据挖掘教学课件lect-3-12人工智能与数据挖掘教学课件lect-3-122/9/2023AI&DM8Information Gain(信息增益)(ID3/C4.5)Select the attribute with the highest information gainAssume
10、there are two classes,P and NLet the set of examples S contain p elements of class P and n elements of class NThe amount of information,needed to decide if an arbitrary example in S belongs to P or N is defined as求蜡寂言保氢咕墙果蜕乔渍圾虏彬彩烯吗泞内帐暴陪耀队把硼舶宇夷赞谋人工智能与数据挖掘教学课件lect-3-12人工智能与数据挖掘教学课件lect-3-122/9/2023AI&
11、DM9Information Gain in Decision Tree BuildingAssume that using attribute A,a set S will be partitioned into sets S1,S2,Sv If Si contains pi examples of P and ni examples of N,the entropy(熵),or the expected information needed to classify objects in all subsets Si isThe encoding information that would
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 人工智能与数据挖掘教学ppt课件 人工智能与数据挖掘教学ppt课件 人工智能 数据 挖掘 教学 ppt 课件
限制150内