《初中数学《勾股定理》教学设计.docx》由会员分享,可在线阅读,更多相关《初中数学《勾股定理》教学设计.docx(21页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、文本为Word版本,下载可任意编辑初中数学勾股定理教学设计 初中数学勾股定理教学设计(通用6篇) 作为一位优秀的人民教师,常常需要准备教学设计,借助教学设计可以促进我们快速成长,使教学工作更加科学化。那么应当如何写教学设计呢?下面是我精心整理的初中数学勾股定理教学设计,欢迎大家借鉴与参考,希望对大家有所帮助。 初中数学勾股定理教学设计 篇1 教学准备 1、教学目标 1了解勾股定理的发现过程,掌握勾股定理的内容,会用面积法证明勾股定理。 2培养在实际生活中发现问题总结规律的意识和能力。 3介绍我国古代在勾股定理研究方面所取得的成就,激发学生的爱国热情,促其勤奋学习。 2、教学重点/难点 1重点:
2、勾股定理的内容及证明。 2难点:勾股定理的证明。 3、教学用具 4、标签 教学过程 设置情景问题,导入新课 相传2500年前,毕达哥拉斯有一次在朋友家里做客时,发现朋友家用砖铺成的地面中反映了直角三角形三边的某种数量关系(图看幻灯片) 数学家毕达哥拉斯的发现:SA+SB=SC 引申到直角三角形 让学生画一个直角边为75px和100px的直角ABC,用刻度尺量出AB的长。 以上这个事实是我国古代3000多年前有一个叫商高的人发现的,他说:“把一根直尺折成直角,两段连结得一直角三角形,勾广三,股修四,弦隅五。”这句话意思是说一个直角三角形较短直角边(勾)的长是3,长的直角边(股)的长是4,那么斜边
3、(弦)的长是5。 再画一个两直角边为5和12的直角ABC,用刻度尺量AB的长。 你是否发现32+42与52的关系,52+122和132的关系,即32+42=52,52+122=132,那么就有勾2+股2=弦2。 对于任意的直角三角形也有这个性质吗? 我国汉代的数学家赵爽指出:四个全等的直角三角形如下拼成一个中空的正方形。 通过位移的形式幻灯片展示 总结:勾股世界 我国是最早了解勾股定理的国家之一。早在三千多年前,周朝数学家商高就提出,将一根直尺折成一个直角三角形,如果勾等于三,股等于四,那么弦就等于五。即“勾三、股四、弦五”。它被记载于我国古代著名的数学著作周髀算经中。在这本书中的另一处,还记
4、载了勾股定理的一般形式。 1945年,人们在研究古巴比伦人遗留下的一块数学泥板时,惊讶地发现上面竟然刻有15组能构成直角三角形三边的数,其年代远在商高之前。 相传二千多年前,希腊的毕达哥拉斯学派首先证明了勾股定理,因此在国外人们通常称勾股定理为毕达哥拉斯定理。 例习题分析 例1(补充)已知:在ABC中,C=90,A、B、C的对边为a、b、c。 求证:a2b2=c2。 分析:让学生准备多个三角形模型,最好是有颜色的吹塑纸,让学生拼摆不同的形状,利用面积相等进行证明。 拼成如图所示,其等量关系为: 发挥学生的想象能力拼出不同的图形,进行证明。 勾股定理的证明方法,达300余种。这个古老的精彩的证法
5、,出自我国古代无名数学家之手。激发学生的民族自豪感,和爱国情怀。 例2已知:在ABC中,C=90,A、B、C的对边为a、b、c。 分析:左右两边的正方形边长相等,则两个正方形的面积相等。 左边和右边面积相等,即化简可证。 课后习题 1勾股定理的具体内容是: 。 2如图,直角ABC的主要性质是:C=90,(用几何语言表示) 两锐角之间的关系:_ ; 若D为斜边中点,则斜边中线 _; 若B=30,则B的对边和斜边:_ ; 三边之间的关系:_。 3ABC的三边a、b、c,若满足,则_ =90;则B是 _角; 若满足,则B是 _角。 初中数学勾股定理教学设计 篇2 课题: 勾股定理 课型: 新授课 课
6、时安排: 1课时 教学目的: 一、知识与技能目标理解和掌握勾股定理的内容,能够灵活运用勾股定理进行计算,并解决一些简单的实际问题。 二、过程与方法目标通过观察分析,大胆猜想,并探索勾股定理,培养学生动手操作、合作交流、逻辑推理的能力。 三、情感、态度与价值观目标了解中国古代的数学成就,激发学生爱国热情;学生通过自己的努力探索出结论获得成就感,培养探索热情和钻研精神;同时体验数学的美感,从而了解数学,喜欢几何。 教学重点: 引导学生经历探索及验证勾股定理的过程,并能运用勾股定理解决一些简单的实际问题 教学难点: 用面积法方法证明勾股定理 课前准备: 多媒体ppt,相关图片 教学过程: (一)情境
7、导入 1、多媒体课件放映图片欣赏:勾股定理数形图,1955年希腊发行的一枚纪念邮票,美丽的勾股树,2023年国际数学大会会标等。通过图形欣赏,感受数学之美,感受勾股定理的文化价值。 2、多媒体课件演示FLASH小动画片:某楼房三楼失火,消防队员赶来救火,了解到每层楼高3米,消防队员取来6.5米长的云梯,如果梯子的底部离墙基的距离是2.5米,请问消防队员能否进入三楼灭火?已知一直角三角形的两边,如何求第三边?学习了今天的这节课后,同学们就会有办法解决了。 (二)学习新课问题一是等腰直角三角形的情形(通过多媒体给出图形),判断外围三个正方形面积有何关系?相传2500年前,毕达哥拉斯(古希腊著名的哲
8、学家、数学家、天文学家)有一次在朋友家做客时,发现朋友家里用砖铺成的地面中反映了直角三角形三边的某种数量关系。你能观察图中的地面,看看能发现什么?对于等腰直角三角形有这样的性质:两直边的平方和等于斜边的平方那么对于一般的直角三角形是否也有这样的性质呢?请大家画一个任意的直角三角形,量一量,算一算。问题二是一般直角三角形的情形,判断这时外围三个正方形的面积是否也存在这种关系?通过这个观察和验算这个直角三角形外围的三个正方形面积之间的关系,同学们发现了什么规律吗?通过前面对两个问题的验证,可以得到勾股定理:如果直角三角形的两直角边长分别为a、b,斜边为c,那么a2+b2=c2。 (三)巩固练习 1
9、、如果一个直角三角形的两条边长分别是6厘米和8厘米,那么这个三角形的周长是多少厘米? 2、解决课程开始时提出的情境问题。 (四)小结 1、背景知识介绍 周髀算径中,西周的商高在公元一千多年前发现了“勾三股四弦五”这一规律; 康熙数学专著勾股图解有五种求解直角三角形的方法,积求勾股法是他的独创。 2、通过这节课的学习,你会写方程了吗?你有什么收获和体会? (五)作业练习18.1中的1、2、3题。板书设计:勾股定理:如果直角三角形的两直角边长分别为a、b,斜边为c,那么a2+b2=c2。 初中数学勾股定理教学设计 篇3 教学目标 1、知识与技能目标:探索并理解直角三角形的三边之间的数量关系,通过探
10、究能够发现直角三角形中两个直角边的平方和等于斜边的平方和。 2、过程与方法目标:经历用测量和数格子的办法探索勾股定理的过程,进一步发展学生的合情推理能力。 3、情感态度与价值观目标:通过本节课的学习,培养主动探究的习惯,并进一步体会数学与现实生活的紧密联系。 教学重点 了解勾股定理的由来,并能用它来解决一些简单的问题。 教学难点 勾股定理的探究以及推导过程。 教学过程 一、创设问题情景、导入新课 首先出示:投影1(章前的图文)并介绍我国古代在勾股定理研究方面的贡献,结合课本第六页谈一谈我国是最早了解勾股定理的国家之一,介绍商高(三千多年前周期的数学家)在勾股定理方面的贡献。 出示课件观察后回答
11、: 1、观察图12,正方形A中有_个小方格,即A的面积为_个单位。 正方形B中有_个小方格,即B的面积为_个单位。 正方形C中有_个小方格,即C的面积为_个单位。 2、你是怎样得出上面的结果的? 3、在学生交流回答的基础上教师进一步设问:图12中,A,B,C面积之间有什么关系?学生交流后得到结论:A+B=C。 二、层层深入、探究新知 1、做一做 出示投影3(书中P3图13) 提问: (1)图13中,A,B,C之间有什么关系? (2)从图12,13中你发现什么? 学生讨论、交流后,得出结论:以三角形两直角边为边的正方形的面积和,等于以斜边为边的正方形面积。 2、议一议 图12、13中,你能用三角
12、形的边长表示正方形的面积吗? (1)你能发现直角三角形三边长度之间的关系吗?在同学交流的基础上,共同探讨得出:直角三角形两直角边的平方和等于斜边的平方。这就是著名的“勾股定理”。也就是说如果直角三角形的两直角边为a,b,斜边为c那么。我国古代称直角三角形的较短的直角边为勾,较长的为股,斜边为弦,这就是勾股定理的由来。 (2)分别以5厘米和12厘米为直角边做出一个直角三角形,并测量斜边的长度(学生测量后回答斜边长为13)请大家想一想(2)中的规律,对这个三角形仍然成立吗? 3、想一想 我们常见的电视的尺寸:29英寸(74厘米)的电视机,指的是屏幕的长吗?还是指的是屏幕的宽?那他指什么呢?能否运用
13、刚才所学的知识,检验一下电视剧的尺寸是否合格? 三、巩固练习。 1、在图11的问题中,折断之前旗杆有多高? 2、错例辨析:ABC的两边为3和4,求第三边 解:由于三角形的两边为3、4 所以它的第三边的c应满足 =25即:c=5辨析: (1)要用勾股定理解题,首先应具备直角三角形这个必不可少的条件,可本题三角形ABC并未说明它是否是直角三角形,所以用勾股定理就没有依据。 (2)若告诉ABC是直角三角形,第三边C也不一定是满足,题目中并未交待C是斜边。 综上所述这个题目条件不足,第三边无法求得 四、课堂小结 鼓励学生自己总结、谈谈自己本节课的收获,以及自己对勾股定理的理解,老师加以纠正和补充。 初
14、中数学勾股定理教学设计 篇4 教学目标 知识与技能: 了解勾股定理的一些证明方法,会简单应用勾股定理解决问题 过程与方法: 在充分观察、归纳、猜想的基础上,探究勾股定理,在探究的过程中,发展合情推理,体会数形结合、从特殊到一般等数学思想。 情感态度价值观: 通过对我国古代研究勾股定理的成就介绍,培养学生的民族自豪感。 教学过程 1、创设情境 问题1国际数学家大会是最高水平的全球性数学学科学术会议,被誉为数学界的“奥运会”。2023年在北京召开了第24届国际数学家大会。下图就是大会会徽的图案。你见过这个图案吗?它由哪些我们学习过的基本图形组成?这个图案有什么特别的含义? 师生活动:教师引导学生寻
15、找图形中的直角三角形和正方形等,并引导学生发现直角三角形的全等关系,指出通过今天的学习,就能理解会徽图案的含义。 设计意图:本节课是本章的起始课,重视引言教学,从国际数学家大会的会徽说起,设置悬念,引入课题。 2、探究勾股定理 观看洋葱数学中关于勾股定理引入的视频,让我们一起走进神奇的数学世界 问题2相传2500多年前,毕达哥拉斯有一次在朋友家作客时,发现朋友家用转铺成的地面图案反应了直角三角形三边的某种数量关系,请你观察下图,你从中发现了什么数量关系? 师生活动:学生先独立观察思考一分钟后,小组交流合作分析图形中两个蓝色正方形与橙色正方形有哪些数量关系,教师参与学生的讨论 追问:由这三个正方
16、形的边长构成的等腰直角三角形三条边长之间又有怎么样的关系? 师生活动:教师引导学生发现正方形的面积等于边长的平方,归纳出:等腰直角三角形两条直角边的平方和等于斜边的平方。 设计意图:从最特殊的等腰直角三角形入手,便于学生观察得到结论 问题3:数学研究遵循从特殊到一般的数学思想,既然我们得到了等腰直角三角形三边的这种特殊的数量关系,那我们不妨大胆猜测在一般的直角三角形(在下图的方格纸中,每个方格的面积是1)中,这种特殊的数量关系也同样成立。 师生活动:学生独立思考后小组讨论,难点是如何证明求以斜边为边长的正方形的面积,可由师生共同总结得出可以通过割、补两种方法,求出其面积。 初中数学勾股定理教学
17、设计 篇5 一、学生知识状况分析 本节将利用勾股定理及其逆定理解决一些具体的实际问题,其中需要学生了解空间图形、对一些空间图形进行展开、折叠等活动。学生在学习七年级上第一章时对生活中的立体图形已经有了一定的认识,并从事过相应的实践活动,因而学生已经具备解决本课问题所需的知识基础和活动经验基础。 二、教学任务分析 本节是义务教育课程标准北师大版实验教科书八年级(上)第一章勾股定理第3节。具体内容是运用勾股定理及其逆定理解决简单的实际问题。当然,在这些具体问题的解决过程中,需要经历几何图形的抽象过程,需要借助观察、操作等实践活动,这些都有助于发展学生的分析问题、解决问题能力和应用意识;一些探究活动
18、具体一定的难度,需要学生相互间的合作交流,有助于发展学生合作交流的能力。 三、本节课的教学目标是: 1.通过观察图形,探索图形间的关系,发展学生的空间观念. 2.在将实际问题抽象成数学问题的过程中,提高分析问题、解决问题的能力及渗透数学建模的思想. 3.在利用勾股定理解决实际问题的过程中,体验数学学习的实用性. 利用数学中的建模思想构造直角三角形,利用勾股定理及逆定理,解决实际问题是本节课的重点也是难点. 四、教法学法 1.教学方法 引导探究归纳 本节课的教学对象是初二学生,他们的参与意识教强,思维活跃,为了实现本节课的教学目标,我力求以下三个方面对学生进行引导: (1)从创设问题情景入手,通
19、过知识再现,孕育教学过程; (2)从学生活动出发,顺势教学过程; (3)利用探索研究手段,通过思维深入,领悟教学过程. 2.课前准备 教具:教材、电脑、多媒体课件. 学具:用矩形纸片做成的圆柱、剪刀、教材、笔记本、课堂练习本、文具 五、教学过程分析 本节课设计了七个环节.第一环节:情境引入;第二环节:合作探究;第三环节:做一做;第四环节:小试牛刀;第五环节:举一反三;第六环节:交流小结;第七环节:布置作业. 1.3勾股定理的应用:课后练习 一、问题引入: 1、勾股定理:直角三角形两直角边的_等于_。如果用a,b和c表示直角三角形的两直角边和斜边,那么_。 2、勾股定理逆定理:如果三角形三边长a
20、,b,c满足_,那么这个三角形是直角三角形 1.3勾股定理的应用:同步检测 1.为迎接新年的到来,同学们做了许多拉花布置教室,准备召开新年晚会,小刘搬来一架高2.5米的木梯,准备把拉花挂到2.4米高的墙上,则梯脚与墙角距离应为( ) A.0.7米B.0.8米C.0.9米D.1.0米 2.小华和小刚兄弟两个同时从家去同一所学校上学,速度都是每分钟走50米.小华从家到学校走直线用了10分钟,而小刚从家出发先去找小明再到学校(均走直线),小刚到小明家用了6分钟,小明家到学校用了8分钟,小刚上学走了个( ) A.锐角弯B.钝角弯C.直角弯D.不能确定 3.如图,是一个圆柱形饮料罐,底面半径是5,高是1
21、2,上底面中心有一个小圆孔,则一条到达底部的直吸管在罐内部分a的长度(罐壁的厚度和小圆孔的大小忽略不计)范围是( ) A.5a12 B.5a13 C.12a13 D.12a15 4.一个木工师傅测量了一个等腰三角形木板的腰、底边和高的长,但他把这三个数据与其它的数据弄混了,请你帮助他找出来,是第( )组. A.13,12,12 B.12,12,8 C.13,10,12 D.5,8,4 初中数学勾股定理教学设计 篇6 一、教学任务分析 勾股定理是平面几何有关度量的最基本定理,它从边的角度进一步刻画了直角三角形的特点。学习勾股定理极其逆定理是进一步认识和理解直角三角形的需要,也是后续有关几何度量运
22、算和代数学习的必然基础。新版数学课程标准对勾股定理教学内容的要求是: 1、在研究图形性质和运动等过程中,进一步发展空间观念; 2、在多种形式的数学活动中,发展合情推理能力; 3、经历从不同角度分析问题和解决问题的方法的过程,体验解决问题方法的多样性; 4、探索勾股定理及其逆定理,并能运用它们解决一些简单的实际问题。 本节勾股定理的应用是北师大版八年级数学上册第一章勾股定理第节、具体内容是运用勾股定理及其逆定理解决简单的实际问题、在这些具体问题的解决过程中,需要经历几何图形的抽象过程,需要借助观察、操作等实践活动,这些都有助于发展学生的分析问题、解决问题能力和应用意识;有些探究活动具有一定的难度
23、,需要学生相互间的合作交流,有助于发展学生合作交流的能力、 本节课的教学目标是: 1、能正确运用勾股定理及其逆定理解决简单的实际问题。 2、经历实际问题抽象成数学问题的过程,学会选择适当的数学模型解决实际问题,提高学生分析问题、解决问题的能力并体会数学建模的思想、 教学重点和难点: 应用勾股定理及其逆定理解决实际问题是重点。 把实际问题化归成数学模型是难点。 二、教学设想 根据新课标提出的“要从学生已有的生活经验出发,让学生亲身经历将实际问题抽象成数学模型并进行解释和运用的同时,在思维能力情感态度和价值观等方面得到进步和发展”的理念,我想尽量给学生创设丰富的实际问题情境 ,使教学活动充满趣味性
24、和吸引力,让他们在自主探究,合作交流中分析问题,建立数学模型,利用勾股定理及其逆定理解决问题。在教学过程中,采用一题多变的形式拓宽学生视野,训练学生思维的灵活性,渗透化归的思想以及分类讨论思想,方程思想等,使学生在获得知识的同时提高能力。 在教学设计中,尽量考虑到不同学习水平的学生,注意知识由易到难的层次性,在课堂上,要照顾到接受较慢的学生。使不同学生有不同的收获和发展。 三、教学过程分析 本节课设计了七个环 勾股定理的应用教学设计节、第一环节:情境引入;第二环节:合作探究;第三环节:变式训练;第四环节:议一议;第五环节:做一做;第六环节:交流小结;第七环节:布置作业。 第一环节:情境引入 情
25、景1:复习提 问:勾股定理的语言表述以及几何语言表达? 设计意图:温习旧知识,规范语言及数学表达,体现 数学的 严谨性和规范性。勾股定理的应用教学设计情景2: 脑筋急转弯一个三角形的两条边是3和4,第三边是多少? 设计意图:既灵活考察学生对勾股定理的理解,又增加了趣味性,还能考察学生三角形三边关系。 第二环节:合作探究(圆柱体表面路程最短问题) 情景3:课本引例(蚂蚁怎样走最近) 设计意图:从有趣的生活场景引入,学生探究热情高涨,通过实际动手操作,结合问题逆向思考,或是回想两点之间线段最短,通过合作交流将实际问题转化为数学模型从而利用勾股定理解决,在活动中体验数学建模,培养学生与人合作交流的能
26、力,增强学生探究能力,操作能力,分析能力,发展空间观念、 第三环节:变式训练(由圆柱体表面路程最短问题逐步变为长方体表面的距离最短问题) 设计意图:将问题的条件稍做改变,让学生尝试独立解决,拓展学生视野,又加深他们对知识的理解和巩固。再将圆柱问题变为正方体长方体问题,学生有了之前的经验,自然而然的将立体转化为平面,利用勾股定理解决,此处长方体问题中学生会有不同的做法,正好透分类讨论思想。 第四环节:议一议 内容:李叔叔想要检测雕塑底座正面的AD边和BC边是否分别垂直于底边AB,但他随身只带了卷尺: (1)你能替他想办法完成任务吗? (2)李叔叔量得AD长是30厘米,AB长是40厘米,BD长是5
27、0厘米,AD边垂直于AB边吗?为什么? (3)小明随身只有一个长度为20厘米的刻度尺,他能有办法检验AD边是否垂直于AB边吗?BC边与AB边呢? 设计意图: 运用勾股定理逆定理来解决实际问题,让学生学会分析问题,正确合理选择数学模型,感受由数到形的转化,利用允许的工具灵活处理问题、 第五环节:方程与勾股定理 在我国古代数学著作九章算术中记载了一道有趣的问题,这个问题的意思是:有一个水池,水面是一个边长为10尺的正方形,在水池的中央有一根新生的芦苇,它高出水面1尺,如果把这根芦苇垂直拉向岸边,它的顶端恰好到达岸边的水面,请问这个水池的深度和这根芦苇的长度各是多 少尺?意图:学生可以进一步了解勾股定理的悠久历史和广泛应用,了解我国古代人民的聪明才智;学会运用方程的思想借助勾股定理解决实际问题。 第六环节:交流小结内容:师生相互交流总结: 1、解决实际问题的方法是建立数学模型求解、 2、在寻求最短路径时,往往把空间问题平面化,利用勾股定理及其逆定理解决实际问题、 3、在直角三角形中,已知一条边和另外两条边的关系,借助方程可以求出另外两条边。 意图:鼓励学生结合本节课的学习谈自己的收获和感想,体会到勾股定理及其逆定理的广泛应用及它们的悠久历史 第七环作业设计: 第一道题难度较小,大部分学生可以独立完成,第二道题有较大难度,可以交流讨论完成。第 21 页 共 21 页
限制150内