备战2019年高考数学大一轮复习 热点聚焦与扩展 专题21 三角函数的图象和性质.doc
《备战2019年高考数学大一轮复习 热点聚焦与扩展 专题21 三角函数的图象和性质.doc》由会员分享,可在线阅读,更多相关《备战2019年高考数学大一轮复习 热点聚焦与扩展 专题21 三角函数的图象和性质.doc(22页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、1专题专题 2121 三角函数的图象和性质三角函数的图象和性质【热点聚焦与扩展热点聚焦与扩展】近几年高考在对三角恒等变换考查的同时,对三角函数图象与性质的考查力度有所加强,往往将三角恒等变换与图象和性质结合考查.其中三角函数的定义域值域、单调性、奇偶性、周期性、对称性以及图象变换是主要考查对象,难度仍然以中低档为主,重在对基础知识的考查,淡化特殊技巧,强调通解通法,其中对函数xAysinRx的图象要求会用五点作图法作出,并理解它的性质: (1)函数图象在其对称轴处取得最大值或最小值,且相邻的最大值与最小值间的距离为其函数的半个周期;(2)函数图象与 x 轴的交点是其对称中心,相邻两对称中心间的
2、距离也是其函数的半个周期;http:/ x 轴的交点间的距离为其函数的41个周期.1、正弦函数sinyx的性质(1)定义域:xR (2)值域:1,1y (3)周期:2T (4)对称轴(最值点):2xkkZ (5)对称中心(零点):,0kkZ,其中0,0是对称中心,故sinyx也是奇函数(6)单调增区间:2,2,22kkkZ单调减区间:32,2,22kkkZ2、余弦函数cosyx的性质(1)定义域:xR 2(2)值域:1,1y (3)周期:2T (4)对称轴(最值点):xkkZ其中0x 是对称轴,故cosyx也是偶函数(5)对称中心(零点):,02kkZ(6)单调增区间:2,2,kkkZ ,单调
3、减区间:2,2,kkkZ 3、正切函数tanyx的性质(1)定义域:|,2xx xkkZ(2)值域:yR (3)周期:T (4)对称中心:,02kkZ(5)零点:,0kkZ(6)单调增区间:,22kkkZ注:正切函数的对称中心由两部分构成,一部分是零点,一部分是定义域取不到的x的值4、sinyx的性质:与正弦函数sinyx相比,其图像可以看做是由sinyx图像变换得到(x轴上方图像不变,下方图像沿x轴向上翻折) ,其性质可根据图像得到:(1)定义域:xR (2)值域:0,1y (3)周期:T 3(4)对称轴:2kxkZ (5)零点:xkkZ(6)单调增区间:,2kkkZ,单调减区间:,2kkk
4、Z5、sin0yAxA的性质:此类函数可视为正弦函数sinyx通过坐标变换所得,通常此类函数的性质要通过计算所得。所涉及的性质及计算方法如下:(1)定义域:xR(2)值域:,yA A (3)周期:2T (4)对称轴(最值点) ,对称中心(零点) ,单调区间需通过换元计算换元计算所求。通常设tx,其中0,则函数变为sinyAt,在求以上性质时,先利用正弦函数性质与图像写出t所满足的条件,然后将t还原为x再解出x的值(或范围)即可注:1、余弦函数也可看做sinyAx的形式,即cossin2yxx,所以其性质可通过计算得到。2、对于某些解析式的性质(如对称轴,单调区间等)可根据解析式的特点先变形成为
5、sinyAx,再求其性质【经典例题经典例题】例 1.【2017 课标 II,文 3】函数( )sin(2)3f xx 的最小正周期为( )A.4 B.2 C. D. 2 【答案】C4例 2.【2017 课标 3,理 6】设函数f(x)=cos(x+3),则下列结论错误的是Af(x)的一个周期为2By=f(x)的图像关于直线 x=8 3对称Cf(x+)的一个零点为 x=6Df(x)在(2,)单调递减【答案】D【解析】例 3. 已知函数的部分图象如图所示,下面结论正确的个数是( )()= ( + )( 0)5函数的最小正周期是;()2函数在区间上是增函数;() 12, 6函数的图象关于直线对称;(
6、) = 12函数的图象可由函数的图象向左平移 个单位长度得到()()= 2 3A. 3 B. 2 C. 1 D. 0【答案】C【解析】根据函数 f(x)=sin(x+)(0)的部分图象知,= ( )= ,T=,=2; 2 3 6 22 根据五点法画图知,2( )+=0,解得 = ; 6 3f(x)=sin(2x+ ); 3对于,函数 f(x)的最小正周期是 T=,错误;对于,x, 时,2x+ ,, 12 6 3 22 3f(x)在, 上是减函数,错误; 12 6对于,x=时,2x+ = , 12 3 2函数 f(x)的图象关于直线 x=对称,正确; 12对于,由 f(x)=sin(2x+ )=
7、sin2(x+ )知, 3 6函数 f(x)的图象可由函数 g(x)=sin2x 的图象向左平移 个单位长度得到,错误; 6综上,正确的命题是.故选:C.例 4.【2017 天津,文理】设函数( )2sin()f xx,xR,其中0,| .若5()28f,6()08f,且( )f x的最小正周期大于2,则(A)2 3,12(B)2 3,12 (C)1 3,24 (D)1 3,24【答案】A 例 5.【2017 课标 II,理 14】函数 23sin3cos4f xxx(0,2x)的最大值是 .【答案】1【解析】【名师点睛】本题经三角函数式的化简将三角函数的问题转化为二次函数的问题,二次函数、二
8、次方程与二次不等式统称“三个二次” ,它们常结合在一起,有关二次函数的问题,数形结合,密切联系图象是探求解题思路的有效方法。一般从:开口方向;对称轴位置;判别式;端点函数值符号四个方面分析.例 6. 已知函数 f(x)=cos-2sin xcos x.3(2 - 3)(1)求 f(x)的最小正周期;(2)求证:当 x时,f(x)- .- 4, 41 27【答案】(1);(2)见解析.(2)证明因为- x , 4 4所以- 2x+.-10 分 6 35 6所以 sinsin=- .(2 + 3)(- 6)1 2所以当 x时,f(x)- ._14 分- 4, 41 2例 7. 设函数 23sin
9、coscosf xxxx(1)求 f x的最小正周期(2)当0,2x时,求函数 f x的最大值和最小值【答案】 (1) f x的最小正周期22T ;(2) f x的最大值是1 2,最小值是1.【解析】试题分析:(1)由二倍角公式将式子化简,再由周期的公式得到结果;(2)0,2x, 52,666x , 1sin 2,162x ,进而得到最值.解析: 23sin coscosf xxxx31cos2sin222xx8311sin2cos2222xx1sin 2,162x ,11sin 21,622x ,即 11,2f x ,当0,2x时, f x的最大值是1 2,最小值是1例 8.【2019 届浙
10、江省部分市学校高三上 9+1 联考】设函数 22sin 2sincos6f xxxx.(1)求 f x的单调递增区间;(2)若角A满足 1fA , 3a , ABC的面积为3 2,求bc的值.【答案】(1) ,63kk, kZ;(2) 3bc.【解析】试题分析:(1)函数解析式利用三角恒等变换化简,再利用两角和与差的正弦函数公式化为一个角的正弦函数,利用正弦函数的单调性即可求出 f x的单调递增区间;(2)由 1fA 及 f x的9解析式求出A的值,再利用三角形面积公式及3a ,求出bc,然后根据余弦定理即可求出bc的值.试题解析:(1) 31sin2cos2cos222f xxxx 31si
11、n2cos2sin 2226xxx,令222262kxk, kZ,得63kxk, kZ.又222cos33bcbc,化简得233bcbc,则29bc3bc.例 9.【2019 届山东省枣庄市第三中学高三一调模拟】已知向量sin ,cos,2cos ,2cosaxxbxx,函数 1f xa b.(1)求 f x的对称中心;(2)求函数 f x在区间0,2 上的最大值和最小值,并求出x相应的值.【答案】 (1),028kxkZ;(2)最大值为2,最小值为1.【解析】试题分析:(1)由 12sin 24f xa bx ,令2 4xkkZ,即可得对称中心;10(2)由0,2x,得32,444x ,进而
12、根据正弦函数的图象即可得最值.(2)由(1)得 sin2cos22sin 24f xxxx,因为0,2x,所以32,444x ,所以242x时,即3 8x, f x的最大值为2,当244x 时,即0x 时, f x的最小值为1.点睛:本题考查的知识点比较多,主要考查二倍角公式、两角差的正弦公式及三角函数的最值,属于中档题.求与三角函数有关的最值常用方法有以下几种:化成2sinsinyaxbxc的形式利用配方法求最值;形如sin sinaxbycxd的可化为 sinxy的形式利用三角函数有界性求最值;sincosyaxbx型,可化为22sinyabx求最值 .本题是利用方法的思路解答的.例 10
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 备战 2019 年高 数学 一轮 复习 热点 聚焦 扩展 专题 21 三角函数 图象 性质
限制150内