《人教版高一数学知识点5篇总结.docx》由会员分享,可在线阅读,更多相关《人教版高一数学知识点5篇总结.docx(14页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、该文本为Word版,下载可编辑人教版高一数学知识点5篇总结 高中数学是很多同学的噩梦,知识点众多而且杂,对于高一的同学们很不友好,我建议同学们通过总结知识点的方法来学习数学,这样可以提高学习效率。下面就是我给大家带来的人教版高一数学知识点总结,希望能帮助到大家! 人教版高一数学知识点1 空间几何体表面积体积公式: 1、圆柱体:表面积:2Rr+2Rh体积:R2h(R为圆柱体上下底圆半径,h为圆柱体高) 2、圆锥体:表面积:R2+R(h2+R2)的体积:R2h/3(r为圆锥体低圆半径,h为其高, 3、a-边长,S=6a2,V=a3 4、长方体a-长,b-宽,c-高S=2(ab+ac+bc)V=ab
2、c 5、棱柱S-h-高V=Sh 6、棱锥S-h-高V=Sh/3 7、S1和S2-上、下h-高V=hS1+S2+(S1S2)1/2/3 8、S1-上底面积,S2-下底面积,S0-中h-高,V=h(S1+S2+4S0)/6 9、圆柱r-底半径,h-高,C底面周长S底底面积,S侧,S表表面积C=2rS底=r2,S侧=Ch,S表=Ch+2S底,V=S底h=r2h 10、空心圆柱R-外圆半径,r-内圆半径h-高V=h(R2-r2) 11、r-底半径h-高V=r2h/3 12、r-上底半径,R-下底半径,h-高V=h(R2+Rr+r2)/313、球r-半径d-直径V=4/3r3=d3/6 14、球缺h-球
3、缺高,r-球半径,a-球缺底半径V=h(3a2+h2)/6=h2(3r-h)/3 15、球台r1和r2-球台上、下底半径h-高V=h3(r12+r22)+h2/6 16、圆环体R-环体半径D-环体直径r-环体截面半径d-环体截面直径V=22Rr2=2Dd2/4 17、桶状体D-桶腹直径d-桶底直径h-桶高V=h(2D2+d2)/12,(母线是圆弧形,圆心是桶的中心)V=h(2D2+Dd+3d2/4)/15(母线是抛物线形) 人教版高一数学知识点2 1、函数零点的定义 (1)对于函数)(xfy,我们把方程0)(xf的实数根叫做函数)(xfy的零点。 (2)方程0)(xf有实根函数()yfx的图像
4、与x轴有交点函数()yfx有零点。因此判断一个函数是否有零点,有几个零点,就是判断方程0)(xf是否有实数根,有几个实数根。函数零点的求法:解方程0)(xf,所得实数根就是()fx的零点(3)变号零点与不变号零点 若函数()fx在零点0x左右两侧的函数值异号,则称该零点为函数()fx的变号零点。若函数()fx在零点0x左右两侧的函数值同号,则称该零点为函数()fx的不变号零点。 若函数()fx在区间,ab上的图像是一条连续的曲线,则0)()( 2、函数零点的判定 (1)零点存在性定理:如果函数)(xfy在区间,ba上的图象是连续不断的曲线,并且有()()0fafb,那么,函数)(xfy在区间,
5、ab内有零点,即存在),(0bax,使得0)(0xf,这个0x也就是方程0)(xf的根。 (2)函数)(xfy零点个数(或方程0)(xf实数根的个数)确定方法 代数法:函数)(xfy的零点0)(xf的根;(几何法)对于不能用求根公式的方程,可以将它与函数)(xfy的图象联系起来,并利用函数的性质找出零点。 (3)零点个数确定 0)(xfy有2个零点0)(xf有两个不等实根;0)(xfy有1个零点0)(xf有两个相等实根;0)(xfy无零点0)(xf无实根;对于二次函数在区间,ab上的零点个数,要结合图像进行确定. 3、二分法 (1)二分法的定义:对于在区间,ab上连续不断且()()0fafb的
6、函数()yfx,通过不断地把函数()yfx的零点所在的区间一分为二,使区间的两个端点逐步逼近零点,进而得到零点的近似值的方法叫做二分法; (2)用二分法求方程的近似解的步骤: 确定区间,ab,验证()()0fafb,给定精确度e; 求区间(,)ab的中点c;计算()fc; ()若()0fc,则c就是函数的零点; ()若()()0fafc,则令bc(此时零点0(,)xac);()若()()0fcfb,则令ac(此时零点0(,)xcb); 判断是否达到精确度e,即ab,则得到零点近似值为a(或b);否则重复至步. 人教版高一数学知识点3 圆的方程定义: 圆的标准方程(x-a)2+(y-b)2=r2
7、中,有三个参数a、b、r,即圆心坐标为(a,b),只要求出a、b、r,这时圆的方程就被确定,因此确定圆方程,须三个独立条件,其中圆心坐标是圆的定位条件,半径是圆的定形条件。 直线和圆的位置关系: 1.直线和圆位置关系的判定方法一是方程的观点,即把圆的方程和直线的方程联立成方程组,利用判别式来讨论位置关系. 0,直线和圆相交.=0,直线和圆相切.0,直线和圆相离. 方法二是几何的观点,即把圆心到直线的距离d和半径R的大小加以比较. dR,直线和圆相离. 2.直线和圆相切,这类问题主要是求圆的切线方程.求圆的切线方程主要可分为已知斜率k或已知直线上一点两种情况,而已知直线上一点又可分为已知圆上一点
8、和圆外一点两种情况. 3.直线和圆相交,这类问题主要是求弦长以及弦的中点问题. 切线的性质 圆心到切线的距离等于圆的半径; 过切点的半径垂直于切线; 经过圆心,与切线垂直的直线必经过切点; 经过切点,与切线垂直的直线必经过圆心; 当一条直线满足 (1)过圆心; (2)过切点; (3)垂直于切线三个性质中的两个时,第三个性质也满足. 切线的判定定理 经过半径的外端点并且垂直于这条半径的直线是圆的切线. 切线长定理 从圆外一点作圆的两条切线,两切线长相等,圆心与这一点的连线平分两条切线的夹角. 人教版高一数学知识点4 1过两点有且只有一条直线 2两点之间线段最短 3同角或等角的补角相等 4同角或等
9、角的余角相等 5过一点有且只有一条直线和已知直线垂直 6直线外一点与直线上各点连接的所有线段中,垂线段最短 7平行公理经过直线外一点,有且只有一条直线与这条直线平行 8如果两条直线都和第三条直线平行,这两条直线也互相平行 9同位角相等,两直线平行 10内错角相等,两直线平行 11同旁内角互补,两直线平行 12两直线平行,同位角相等 13两直线平行,内错角相等 14两直线平行,同旁内角互补 15定理三角形两边的和大于第三边 16推论三角形两边的差小于第三边 17三角形内角和定理三角形三个内角的和等于180 18推论1直角三角形的两个锐角互余 19推论2三角形的一个外角等于和它不相邻的两个内角的和
10、 20推论3三角形的一个外角大于任何一个和它不相邻的内角 21全等三角形的对应边、对应角相等 22边角边公理(sas)有两边和它们的夹角对应相等的两个三角形全等 23角边角公理(asa)有两角和它们的夹边对应相等的两个三角形全等 24推论(aas)有两角和其中一角的对边对应相等的两个三角形全等 25边边边公理(sss)有三边对应相等的两个三角形全等 人教版高一数学知识点5 定义: 形如y=xa(a为常数)的函数,即以底数为自变量幂为因变量,指数为常量的函数称为幂函数。 定义域和值域: 当a为不同的数值时,幂函数的定义域的不同情况如下:如果a为任意实数,则函数的定义域为大于0的所有实数;如果a为
11、负数,则x肯定不能为0,不过这时函数的定义域还必须根据q的奇偶性来确定,即如果同时q为偶数,则x不能小于0,这时函数的定义域为大于0的所有实数;如果同时q为奇数,则函数的定义域为不等于0的所有实数。当x为不同的数值时,幂函数的值域的不同情况如下:在x大于0时,函数的值域总是大于0的实数。在x小于0时,则只有同时q为奇数,函数的值域为非零的实数。而只有a为正数,0才进入函数的值域 性质: 对于a的取值为非零有理数,有必要分成几种情况来讨论各自的特性: 首先我们知道如果a=p/q,q和p都是整数,则x(p/q)=q次根号(x的p次方),如果q是奇数,函数的定义域是R,如果q是偶数,函数的定义域是0,+)。当指数n是负整数时,设a=-k,则x=1/(xk),显然x0,函数的定义域是(-,0)(0,+).因此可以看到x所受到的限制来源于两点,一是有可能作为分母而不能是0,一是有可能在偶数次的根号下而不能为负数,那么我们就可以知道: 排除了为0与负数两种可能,即对于x0,则a可以是任意实数; 排除了为0这种可能,即对于x0和x0的所有实数,q不能是偶数; 排除了为负数这种可能,即对于x为大于且等于0的所有实数,a就不能是负数。 总结起来,就可以得到当a为不同的数值时,幂函数的定义域的不同情况如下: 人教版高一数学知识点5篇总结最新 第 14 页 共 14 页
限制150内