第二章-图像变换---计算机系主页.ppt
《第二章-图像变换---计算机系主页.ppt》由会员分享,可在线阅读,更多相关《第二章-图像变换---计算机系主页.ppt(90页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、第第3章章 图像变换图像变换p傅立叶变换傅立叶变换(FFT)FFT)p离散余弦变换离散余弦变换(DCT)(DCT)pK-LK-L变换变换p小波变换小波变换问题的提出问题的提出p为达到为达到某种目的某种目的将原始图象变换映射到另一个空间上,使将原始图象变换映射到另一个空间上,使得图象的某些特征得以得图象的某些特征得以突出突出,以便于后面的,以便于后面的处理和识别处理和识别。p一般变换后的图象,大部分一般变换后的图象,大部分能量能量都分布于都分布于低频谱段低频谱段,这对,这对以后图象的以后图象的压缩、传输压缩、传输都比较有利。使得运算次数减少,都比较有利。使得运算次数减少,节省时间节省时间p傅立叶
2、变换FFT线性系统线性系统p对于一般线性系统,往往是用时间作为参数来描述的,表示为一维(t)系统。在图像处理中是用空间作为参数来描述的,通常表示为二维(x,y)系统。输入函数f(x,y)表示原始图像,输出函数g(x,y)表示经处理后的图像,线性系统可看作是一种映射,它反映了各种线性的图像处理方法,其输入和输出的关系表示为:二维线性系统二维线性系统p叠加原理点源和狄拉克点源和狄拉克函数函数 p一幅图像可以看成由无穷多极小的象素组成,每一个象素都可以看作为一个点源,因此,一幅图像也可以看成由无穷多点源所组成 p数学上,点源可以用狄拉克函数来表示,二维函数定义为 p满足狄拉克狄拉克函数性质函数性质(
3、1)(1)函数函数为为偶函数,即偶函数,即(2)(2)位移性位移性或用卷或用卷积积符号符号*表示表示为为(3)(3)可分性可分性(4)(4)乘乘积积性性(5)(5)筛选筛选性性当且当且仅仅当当0 0时时(6)(6)指数函数指数函数卷积p假设f(x)(x=0,1,A-1)以及g(x)(x=0,1,C-1)是两个有限离散函数,其线性卷积为 原原点点对对折折平移xp对于图像二维函数的卷积,则 相关p2个函数的相关定义为 其中其中f*(i)为为f(i)的复共轭的复共轭 一维连续傅立叶变换一维连续傅立叶变换p定义及基本概念定义及基本概念设设f(x)为为x的函数,如果的函数,如果f(x)满足下面的狄里赫莱
4、条件:满足下面的狄里赫莱条件:(1)具有有限个间断点)具有有限个间断点(2)具有有限个极值点)具有有限个极值点(3)绝对可积)绝对可积则有下列式成立:则有下列式成立:x为时域变量,为时域变量,u为频域变量为频域变量(1)(2)如果令如果令w2u,则有则有称为傅立称为傅立叶变换对叶变换对函数函数f(x)的傅立叶变换一般是一个复量,它可以用下式的傅立叶变换一般是一个复量,它可以用下式表示:表示:指数形式:指数形式:|F(w)|称为傅立称为傅立叶谱,叶谱,(w)称称为相位谱,为相位谱,E(w)为能量谱为能量谱或功率普或功率普p实例p傅立叶变换p其相位为Af(x)x/2-/2-u(u)p傅立叶谱p周期
5、函数的傅立叶变换f(x)x傅立叶级数傅立叶级数来表示来表示傅立叶变换傅立叶变换 冲激序列冲激序列w003w0w-3w0-w0F(u)结论p1、只要满足一定条件,连续函数就可以进行傅、只要满足一定条件,连续函数就可以进行傅立叶变换,实际上这个条件在工程应用中很容立叶变换,实际上这个条件在工程应用中很容易满足。易满足。p2、连续非周期函数的傅立叶谱是连续的非周期、连续非周期函数的傅立叶谱是连续的非周期函数,连续的周期函数的傅立叶谱是离散的非函数,连续的周期函数的傅立叶谱是离散的非周期函数。周期函数。二维连续傅立叶变换如果二维函数如果二维函数f(x,y)满足狄里赫莱条件,则将有下满足狄里赫莱条件,则
6、将有下面的傅立叶变换对存在:面的傅立叶变换对存在:与一维傅立叶变换类似,二维傅立叶变换与一维傅立叶变换类似,二维傅立叶变换的傅立叶谱和相位谱为:的傅立叶谱和相位谱为:例:求如图所示的函数的傅立叶谱例:求如图所示的函数的傅立叶谱xyf(x,y)Af(x,y)函数函数其傅立叶变换为:其傅立叶变换为:其傅立叶谱为:其傅立叶谱为:离散傅立叶变换离散傅立叶变换p由于实际问题的时间或空间函数的区间是有限的,或者是频谱有截止频率 p离散傅立叶变换(Discrete Fourier Transform简称DFT)在数字信号处理和数字图像处理中应用十分广泛,它建立了离散时域和离散频域之间的联系 p一维离散傅立叶
7、变换一维离散傅立叶变换非周期性的非周期性的连续信号连续信号周期性的连续周期性的连续信号信号非周期性的非周期性的离散谱离散谱取样作离散取样作离散化处理化处理周期性的连周期性的连续谱续谱离散化并延拓离散化并延拓为周期性信号为周期性信号离散的周离散的周期性谱期性谱连续的非周期连续的非周期性的波形性的波形二维离散傅立叶变换二维离散傅立叶变换p由于图像的频率是表征图像中由于图像的频率是表征图像中灰度变化剧烈程度灰度变化剧烈程度的指标,是灰度在平的指标,是灰度在平面空间上的梯度。面空间上的梯度。p如:大面积的沙漠在图像中是一片灰度变化缓慢的区域,对应的频率如:大面积的沙漠在图像中是一片灰度变化缓慢的区域,
8、对应的频率值很低;而对于地表属性变换剧烈的边缘区域在图像中是一片灰度变值很低;而对于地表属性变换剧烈的边缘区域在图像中是一片灰度变化剧烈的区域,对应的频率值较高。化剧烈的区域,对应的频率值较高。p傅立叶变换在实际中的物理意义,设傅立叶变换在实际中的物理意义,设f是一个能量有限的模拟信号,是一个能量有限的模拟信号,则其傅立叶变换就表示则其傅立叶变换就表示f的谱。的谱。p从纯粹的数学意义上看,傅立叶变换是将一个函数转换为一系列周期从纯粹的数学意义上看,傅立叶变换是将一个函数转换为一系列周期函数来处理的。函数来处理的。p从物理效果看,傅立叶变换是将图像从空间域转换到频率域,其逆变从物理效果看,傅立叶
9、变换是将图像从空间域转换到频率域,其逆变换是将图像从频率域转换到空间域。换是将图像从频率域转换到空间域。p换句话说,傅立叶变换的物理意义是将图像的灰度分布函数变换为图换句话说,傅立叶变换的物理意义是将图像的灰度分布函数变换为图像的频率分布函数,傅立叶逆变换是将图像的频率分布函数变换为灰像的频率分布函数,傅立叶逆变换是将图像的频率分布函数变换为灰度分布函数。度分布函数。一个一个MN大小的二维函数大小的二维函数f(x,y),其离散傅立叶变换对为,其离散傅立叶变换对为 在数字图像处理中,图像一般取样为方形矩阵,即在数字图像处理中,图像一般取样为方形矩阵,即NN,则其傅立叶变换及其逆变换为,则其傅立叶
10、变换及其逆变换为(1)可分性)可分性从上式可以看出,一个二维傅立叶变换从上式可以看出,一个二维傅立叶变换可用二次一维傅立叶变换来实现可用二次一维傅立叶变换来实现傅立叶变换的性质傅立叶变换的性质其意义:一个二维傅立叶变换或反变换都可以分其意义:一个二维傅立叶变换或反变换都可以分解为二步进行,其中每一步都是一个一维傅立叶解为二步进行,其中每一步都是一个一维傅立叶变换或反变换变换或反变换f(x,y)(0,0)N-1N-1xyF(x,v)(0,0)N-1N-1xvF(u,v)(0,0)N-1N-1vu行变换行变换列变换列变换二维傅立叶变换分离成两个一维变换二维傅立叶变换分离成两个一维变换行变换行变换列
11、变换列变换(2)平移性)平移性在空域中,图像原点平移到在空域中,图像原点平移到(x0,y0)时,其对应的频时,其对应的频谱谱F(u,v)要乘上一个负的指数项要乘上一个负的指数项在频域中,原点平移到在频域中,原点平移到(u0,v0)时,其对应的时,其对应的f(x,y)要乘上一个正的指数项要乘上一个正的指数项也就是说,当空域中也就是说,当空域中f(x,y)产生移动时,在频域中只发产生移动时,在频域中只发生相移,而傅立叶变换的幅值不变生相移,而傅立叶变换的幅值不变反之,当频域中反之,当频域中F(u,v)产生移动时,相应的产生移动时,相应的f(x,y)在空在空域中也只发生相移,而幅值不变域中也只发生相
12、移,而幅值不变在数字图像处理中,我们常常将在数字图像处理中,我们常常将F(u,v)的原点移到的原点移到NN频频域方阵的中心,以使能清楚地分析傅立叶变换谱的情况,域方阵的中心,以使能清楚地分析傅立叶变换谱的情况,只需令:只需令:u0v0N/2则则即,如果将图像频谱的原点从起点即,如果将图像频谱的原点从起点(0,0)移到图像中移到图像中心点心点(N/2,N/2),只要只要f(x,y)乘上乘上(1)(xy)因子进行傅因子进行傅立叶变换即可立叶变换即可平移(3)周期性和共轭对程性)周期性和共轭对程性周期性可表示为周期性可表示为 如果如果F(u,v)是是f(x,y)的傅立叶变换,则的傅立叶变换,则F*(
13、-u,-v)是是f(-x,-y)的傅立叶变换的共轭函数的傅立叶变换的共轭函数F(u,v)=F*(-u,-v)|F(u,v)|=|F(-u,-v)|共轭对称性可表示为共轭对称性可表示为(4)旋转不变性)旋转不变性如果引入极坐标如果引入极坐标则则f(x,y)和和F(u,v)分别变为分别变为f(r,)和和F(,)在极坐标系中,存在以下变换对在极坐标系中,存在以下变换对该式表明,如果空间域函数该式表明,如果空间域函数f(x,y)旋转旋转0角度后,相角度后,相应的傅立叶变换应的傅立叶变换F(u,v)在频域中也旋转同一在频域中也旋转同一0角,角,反之,反之,F(u,v)在频域中旋转在频域中旋转0角,其反变
14、换角,其反变换f(x,y)在在空间域中也旋转空间域中也旋转0角角(5)分配性和比例性)分配性和比例性傅立叶变换的分配性表明,傅立叶变换和反变换傅立叶变换的分配性表明,傅立叶变换和反变换对于加法可以分配,而对乘法则不行,即对于加法可以分配,而对乘法则不行,即傅立叶变换的比例性表明,对于二个标量傅立叶变换的比例性表明,对于二个标量a和和b,有有在空间比例尺度的展宽,相应于频域中比例尺度的在空间比例尺度的展宽,相应于频域中比例尺度的压缩,其幅值也减少为原来的压缩,其幅值也减少为原来的(6)平均值性质)平均值性质定义二维离散函数的平均值为定义二维离散函数的平均值为将将u=v=0代入二维离散傅立叶公式,
15、可得代入二维离散傅立叶公式,可得比较上面两式,可看出比较上面两式,可看出若求二维离散信号若求二维离散信号f(x,y)的平均值,只需算出相的平均值,只需算出相应的傅立叶变换应的傅立叶变换F(u,v)在原点的值在原点的值F(0,0)(7)卷积定理)卷积定理卷积定理和相关定理都是研究两个函数的傅立叶变换卷积定理和相关定理都是研究两个函数的傅立叶变换之间的关系,这构成了空间域和频域之间的基本关系之间的关系,这构成了空间域和频域之间的基本关系对于两个二维连续函数对于两个二维连续函数f(x,y)和和g(x,y)的卷积定义为的卷积定义为其二维卷积定理可由下面关系表示其二维卷积定理可由下面关系表示设设则则指出
16、傅立叶变换一个主要好处:与其在一个域中作不指出傅立叶变换一个主要好处:与其在一个域中作不直观的,和难懂的卷积,不如在另外一个域中作乘法,直观的,和难懂的卷积,不如在另外一个域中作乘法,可以达到相同的效果可以达到相同的效果它表明两个二维连续函数在空间域中的卷积可用求其相应的它表明两个二维连续函数在空间域中的卷积可用求其相应的两个傅立叶变换乘积的逆变换而得。两个傅立叶变换乘积的逆变换而得。反之,在频域中的卷积可用空间域中乘积的傅立叶变换而得,反之,在频域中的卷积可用空间域中乘积的傅立叶变换而得,应用卷积定理明显的好处是避免了直接计算卷积的麻烦,它应用卷积定理明显的好处是避免了直接计算卷积的麻烦,它
17、只需要先算出各自的频谱,然后相乘,再求其逆变换,即可只需要先算出各自的频谱,然后相乘,再求其逆变换,即可得到卷积。得到卷积。p离散傅立叶变换和逆变换都是周期函数,为了防止卷积后产生交叠误差,需要对离散的二维函数的定义域加以扩展。p利用一维函数来说明函数定义域的扩展,设f(x)(x=0,1.A-1)和g(x)(x=0,1,.C-1)是两个有限的离散函数,也就是说f(x)定义域为0 xA-1,g(x)的定义域为0 xC-1。则其线性卷积为 p如果利用卷积定理来计算该卷积,则相当于把如果利用卷积定理来计算该卷积,则相当于把f(x)和和g(x)分别以分别以A和和C为周期进行周期延拓,因此,将上式改写为
18、为周期进行周期延拓,因此,将上式改写为(一个周期一个周期)p求得结果将不是需要的求得结果将不是需要的z(x),而是周期循环的,而是周期循环的 p为了避免循环卷积,可以对原被卷积函数补零。由于卷积结果的长度为N=A+C-1,因此,可以把两个被卷积的函数的长度扩展到N,并在原函数定义区间外的部分补零,即取 同样地,二维离散卷积计算时,也必须对被卷积函数同样地,二维离散卷积计算时,也必须对被卷积函数进行延拓和补零,如果被卷积函数进行延拓和补零,如果被卷积函数f(x,y)和和g(x,y)地大地大小分别为小分别为AB和和CD,则延拓后地函数为:,则延拓后地函数为:(8)相关定理)相关定理对于二维连续函数
19、对于二维连续函数f(x,y)和和g(x,y)的相关定义为的相关定义为 相关定理可表示为相关定理可表示为p在离散情况下,与离散卷积一样,需要用增补零的方法扩充f(x,y)和g(x,y)为fe(x,y)和ge(x,y),并根据卷积定理相类似的方法来选取M和N,以避免在相关函数周期内产生交叠误差。快速傅立叶变换快速傅立叶变换(FFT)p离散傅立叶变换已成为数字信号处理的重要工具,然而,离散傅立叶变换已成为数字信号处理的重要工具,然而,它的计算量达,运算时间长它的计算量达,运算时间长,在某种程度上却限制了它的,在某种程度上却限制了它的使用范围。使用范围。p快速算法快速算法大大提高了运算速度大大提高了运
20、算速度,在某些应用场合已,在某些应用场合已能作实能作实时处理时处理,并且应用在控制系统中,并且应用在控制系统中p快速傅立叶变换快速傅立叶变换不是一种新的变换不是一种新的变换,它是离散傅立叶变换,它是离散傅立叶变换的一种算法,它是在分析离散傅立叶变换中的的一种算法,它是在分析离散傅立叶变换中的多余运算的多余运算的基础基础上,进而消除这些重复工作的思想指导下得到的上,进而消除这些重复工作的思想指导下得到的其原理:其原理:对于一个有限长序列对于一个有限长序列f(x)(0 x N-1),它的傅它的傅立叶变换由下式表示:立叶变换由下式表示:令令傅立叶变换对可写为:傅立叶变换对可写为:(1)(2)将正变换
21、将正变换(1)展开得到:展开得到:矩阵表示为:矩阵表示为:从上式可以看出,要得到每一个频率分量,需进行从上式可以看出,要得到每一个频率分量,需进行N次乘次乘法和法和N-1次加法运算。要完成整个变换需要次加法运算。要完成整个变换需要N2次乘法和次乘法和N(N-1)次加法运算。当序列较长时,必然要花费大量的时次加法运算。当序列较长时,必然要花费大量的时间间观察上面的系数矩阵,发现观察上面的系数矩阵,发现Wmn是以是以N为周期的,即为周期的,即当当N=8时,其周期性如图所示,由于时,其周期性如图所示,由于所以当所以当N=8时,可得:时,可得:W0W1W2W3W4W5W6W7可见,离散傅立叶变换中的乘
22、法运算有许多重复内容。可见,离散傅立叶变换中的乘法运算有许多重复内容。1965年库利年库利-图基提出原始的图基提出原始的N点序列依次分解成一点序列依次分解成一系列短序列,然后,求出这些短序列的离散傅立叶变系列短序列,然后,求出这些短序列的离散傅立叶变换,以此来减少乘法运算,例如,设:换,以此来减少乘法运算,例如,设:由此,离散傅立叶变换可写成下面的形式:由此,离散傅立叶变换可写成下面的形式:因为:因为:所以:所以:F1(u)和和F2(u)分别是分别是f1(x)和和f2(x)的的N/2点点的傅立叶变换的傅立叶变换 由于由于F1(u)和和F2(u)均是以均是以N/2为周期,所以为周期,所以 这说明
23、当这说明当mN/2时,上式也是成立的,因此下式成立:时,上式也是成立的,因此下式成立:由上面的分析可见,一个由上面的分析可见,一个N点的离散傅立叶变换可点的离散傅立叶变换可由两个由两个N/2点的傅立叶变换得到点的傅立叶变换得到离散傅立叶变换的计算时间主要由乘法决定,分解后所需离散傅立叶变换的计算时间主要由乘法决定,分解后所需的乘法次数大为减少。第一项为的乘法次数大为减少。第一项为(N/2)2次,第二项为次,第二项为(N/2)2N次,总共为次,总共为2(N/2)2N次运算即可完成,而原次运算即可完成,而原来需要来需要N2次运算,可见分解后的乘法计算次数减少了近一次运算,可见分解后的乘法计算次数减
24、少了近一半。半。当当N为为2的整数幂时,则上式中的的整数幂时,则上式中的F1(u)和和F2(u)还可以再分还可以再分成两个更短的序列,因此计算时间会更短。成两个更短的序列,因此计算时间会更短。由此可见,利用由此可见,利用WNm的周期性和分解运算,从而减少乘法的周期性和分解运算,从而减少乘法运算次数是实现快速运算的关键运算次数是实现快速运算的关键实例实例离散余弦变换p离散余弦变换离散余弦变换(Discrete Cosine Transform-简称简称DCT)是傅里是傅里叶变换的一种特殊情况。在傅里叶级数展开式中,被展开的函数是实叶变换的一种特殊情况。在傅里叶级数展开式中,被展开的函数是实偶函数
25、时,其傅里叶级数中只包含余弦项,称之为余弦变换偶函数时,其傅里叶级数中只包含余弦项,称之为余弦变换 pDCT计算复杂性适中,又具有可分离特性,还有快速算法,所以被广计算复杂性适中,又具有可分离特性,还有快速算法,所以被广泛地用在图象数据压缩编码算法中,如泛地用在图象数据压缩编码算法中,如JPEG、MPEG-1、MPEG-2及及H.261等压缩编码国际标准都采用了离散余弦变换编码算法等压缩编码国际标准都采用了离散余弦变换编码算法 p其变换核是为实数的余弦函数,因而其变换核是为实数的余弦函数,因而DCT的计算速度比的计算速度比DFT快得多快得多p对于具有一阶马尔可夫过程的随机信号,对于具有一阶马尔
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 第二 图像 变换 计算机系 主页
限制150内