抽象函数解题方法和技巧.doc
《抽象函数解题方法和技巧.doc》由会员分享,可在线阅读,更多相关《抽象函数解题方法和技巧.doc(13页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、抽象函数解题方法和技巧抽象函数解题方法与技巧函数的周期性:1、定义在xR上的函数y=f(x),满足f(x+a)=f(xa)(或f(x-2a)=f(x))(a0)恒成立,则y=f(x)是周期为2a的周期函数;2、若y=f(x)的图像关于直线x=a和x=b对称,则函数y=f(x)是周期为2ab|的周期函数;3、若y=f(x) 的图像关于点(a,0)和(b,0)对称,则函数y=f(x)是周期为2|a-b的周期函数;4、若y=f(x) 的图像有一个对称中心A(a,0)和一条对称轴x=b(ab),则函数y=f(x)是周期为4|a-b的周期函数;5、若函数y=f(x)满足f(a+x)=f(a-x),其中a
2、0,且如果y=f(x)为奇函数,则其周期为4a;如果y=f(x)为偶函数,则其周期为2a;6、定义在xR上的函数y=f(x),满足f(x+a)=f(x),则y=f(x)是周期为2a的周期函数;7、若在xR恒成立,其中a0,则y=f(x)是周期为4a的周期函数;8、若在xR恒成立,其中a0,则y=f(x)是周期为2a的周期函数。(7、8应掌握具体推导方法,如7)函数图像的对称性:1、若函数y=f(x)满足f(a+x)=f(b-x),则函数y=f(x)的图像关于直线对称;2、若函数y=f(x)满足f(x)=f(2ax)或f(x+a)=f(a-x),则函数y=f(x)的图像关于直线x=a对称;3、若
3、函数y=f(x)满足f(a+x)+f(b-x)=c,则y=f(x)的图像关于点成中心对称图形;4、曲线f(x,y)=0关于点(a,b)的对称曲线的方程为f(2a-x,2by)=0;5、形如的图像是双曲线,由常数分离法知:对称中心是点;6、设函数y=f(x)定义在实数集上,则y=f(x+a)与y=f(b-x)的图像关于直线对称;7、若函数y=f(x)有反函数,则y=f(a+x)和y=f -1(x+a)的图像关于直线y=x+a对称。一、 换元法 换元法包括显性换元法和隐性换元法,它是解答抽象函数问题的基本方法。例1. 已知f(1+sinx)=2+sinx+cos2x, 求f(x)二、方程组法 运用
4、方程组通过消参、消元的途径也可以解决有关抽象函数的问题。例2三、待定系数法 如果抽象函数的类型是确定的,则可用待定系数法来解答有关抽象函数的问题。例3已知f(x)是二次函数,且f(x+1)+f(x1)=2x2-4x,求f(x).四、赋值法 有些抽象函数的性质是用条件恒等式给出的,可通过赋特殊值法使问题得以解决。例4对任意实数x,y,均满足f(x+y2)=f(x)+2f(y)2且f(1)0,则f(2001)=_.例5已知f(x)是定义在R上的不恒为零的函数,且对于任意的实数a,b都满足f(ab)=af(b)+bf(a). (1)求f(0),f(1)的值;(2)判断f(x)的奇偶性,并证明你的结论
5、;五、转化法 通过变量代换等数学手段将抽象函数具有的性质与函数的单调性等定义式建立联系,为问题的解决带来极大的方便。例6设函数f(x)对任意实数x,y,都有f(x+y)=f(x)+f(y),若x0时f(x)0且a1)f(x+y)=f(x)f(y)对数函数 f(x)=logax (a0且a1)f(xy)=f(x)+f(y) 正、余弦函数 f(x)=sinx f(x)=cosxf(x+T)=f(x)正切函数 f(x)=tanx余切函数 f(x)=cotx例10已知实数集上的函数f(x)恒满足f(2+x)= f(2-x),方程f(x)=0有5个实根,则这5个根之和=_例11设定义在R上的函数f(x)
6、,满足当x0时,f(x)1,且对任意x,yR,有f(x+y)=f(x)f(y),f(1)=2 (1)解不等式f(3xx2)4;(2)解方程f(x)2+f(x+3)=f(2)+1例12已知函数f(x)对任何正数x,y都有f(xy)=f(x)f(y),且f(x)0,当x1时,f(x)0)恒成立,则y=f(x)是周期为2a的周期函数;2、若y=f(x)的图像关于直线x=a和x=b对称,则函数y=f(x)是周期为2|a-b的周期函数;3、若y=f(x) 的图像关于点(a,0)和(b,0)对称,则函数y=f(x)是周期为2|a-b|的周期函数;4、若y=f(x) 的图像有一个对称中心A(a,0)和一条对
7、称轴x=b(ab),则函数y=f(x)是周期为4|ab的周期函数;5、若函数y=f(x)满足f(a+x)=f(ax),其中a0,且如果y=f(x)为奇函数,则其周期为4a;如果y=f(x)为偶函数,则其周期为2a;6、定义在xR上的函数y=f(x),满足f(x+a)=f(x),则y=f(x)是周期为2a的周期函数;7、若在xR恒成立,其中a0,则y=f(x)是周期为4a的周期函数;8、若在xR恒成立,其中a0,则y=f(x)是周期为2a的周期函数。(7、8应掌握具体推导方法,如7)函数图像的对称性:1、若函数y=f(x)满足f(a+x)=f(bx),则函数y=f(x)的图像关于直线对称;2、若
8、函数y=f(x)满足f(x)=f(2a-x)或f(x+a)=f(ax),则函数y=f(x)的图像关于直线x=a对称;3、若函数y=f(x)满足f(a+x)+f(bx)=c,则y=f(x)的图像关于点成中心对称图形;4、曲线f(x,y)=0关于点(a,b)的对称曲线的方程为f(2ax,2by)=0;5、形如的图像是双曲线,由常数分离法知:对称中心是点;6、设函数y=f(x)定义在实数集上,则y=f(x+a)与y=f(b-x)的图像关于直线对称;7、若函数y=f(x)有反函数,则y=f(a+x)和y=f -1(x+a)的图像关于直线y=x+a对称。二、 换元法 换元法包括显性换元法和隐性换元法,它
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 抽象 函数 解题 方法 技巧
限制150内