实际问题的二次函数应用桥拱.pptx
《实际问题的二次函数应用桥拱.pptx》由会员分享,可在线阅读,更多相关《实际问题的二次函数应用桥拱.pptx(9页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、解一解二解三探究3 图中是抛物线形拱桥,当水面在 时,拱顶离水面2m,水面宽4m,水面下降1m时,水面宽度增加了多少?继续第1页/共9页解一 以抛物线的顶点为原点,以抛物线的对称轴为 轴,建立平面直角坐标系,如图所示.可设这条抛物线所表示的二次函数的解析式为:当拱桥离水面2m时,水面宽4m即抛物线过点(2,-2)这条抛物线所表示的二次函数为:当水面下降1m时,水面的纵坐标为y=-3,这时有:当水面下降1m时,水面宽度增加了返回第2页/共9页解二如图所示,以抛物线和水面的两个交点的连线为x轴,以抛物线的对称轴为y轴,建立平面直角坐标系.当拱桥离水面2m时,水面宽4m即:抛物线过点(2,0)这条抛
2、物线所表示的二次函数为:当水面下降1m时,水面的纵坐标为y=-1,这时有:当水面下降1m时,水面宽度增加了可设这条抛物线所表示的二次函数的解析式为:此时,抛物线的顶点为(0,2)返回第3页/共9页解三 如图所示,以抛物线和水面的两个交点的连线为x轴,以其中的一个交点(如左边的点)为原点,建立平面直角坐标系.可设这条抛物线所表示的二次函数的解析式为:抛物线过点(0,0)这条抛物线所表示的二次函数为:当水面下降1m时,水面的纵坐标为y=-1,这时有:当水面下降1m时,水面宽度增加了此时,抛物线的顶点为(2,2)这时水面的宽度为:返回第4页/共9页 例:某工厂大门是一抛物线形的水泥建筑物,大门底部宽
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 实际问题 二次 函数 应用 桥拱
限制150内