土木工程结构抗风设计 南航8.pptx
《土木工程结构抗风设计 南航8.pptx》由会员分享,可在线阅读,更多相关《土木工程结构抗风设计 南航8.pptx(67页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、风风的的攻攻角角:由于地形的影响,近地风的方向可能对水平面产生一定的倾斜度,称为风的攻角。具有攻角的风可能对桥梁的风致振动,如颤振,产生不利的影响。一般认为高风速时的平均攻角约在3之间。阵阵风风系系数数:瞬时风速与10min平均风速的比值。计算阵风荷载时应采用时距为13s的瞬时(阵风)风速,即由阵风系数乘以设计基准风速求得。静静力力扭扭转转发发散散:在空气静力扭转力矩作用下,当风速超过某一临界值时,悬吊桥梁主梁扭转变形的附加攻角所产生的空气力矩增量超过了结构抵抗力矩的增量,使主梁出现一种不稳定的扭转发散现象。静静力力横横向向屈屈曲曲:作用于悬吊桥梁主梁上的横向静风载超过主梁侧向屈曲的临界荷载时
2、出现的一种静力失稳现象。第1页/共67页颤颤振振:是一种危险性自激发散振动,当其达到临界风速时,振动的桥梁通过气流的反馈作用不断吸取能量从而使振幅逐步增大直至最后使结构破坏。驰驰振振:对于非圆形的边长比在一定范围内的类似矩形断面的钝体结构及构件,由于升力曲线的负斜率效应,微幅振动的结构能够从风流中不断吸取能量,当达到临界风速时,结构吸收的能量将克服结构阻尼所消耗的能量,形成一种发散的横风向单自由度弯曲自激振动。涡涡激激共共振振:风流经各种断面形状(圆形、矩形、多边形等)的钝体结构时都有可能发生旋涡的脱落,出现两侧交替变化的涡激力。当旋涡脱落频率接近或等于结构的自振频率时,将由此激发出结构的共振
3、。抖抖振振:大气中的紊流成分所激起的强迫振动,也称为紊流风响应。抖振是一种限幅振动,由于它发生频度高,可能会引起结构的疲劳。过大的抖振振幅会引起人感不适,甚至危及桥上高速行车的安全。(8-2)第2页/共67页静静力力三三分分试试验验:采用主梁或桥塔的刚性节段模型,在风洞中测定平均风绕流的静作用力的三个分量,即阻力、升力和扭转力矩。无量纲的三分力系数和攻角的关系曲线反映出断面的基本气动性能,是分析桥梁各种风致振动和静力稳定的重要参数。节节段段模模型型试试验验:将主梁的代表性做成刚性模型,用弹簧悬挂在支架上形成一个有竖向平动、转动(及侧向)自由度的振动模型,在风洞中测定风的动力作用。满足相似条件的
4、节段模型试验可直接测定二维颤振的临界风速,也可识别出用气动导数表示的非定常动力,是桥梁最重要的风洞试验之一。全全桥桥气气动动弹弹性性模模型型试试验验:将全桥按一定几何缩尺制成并满足各种必要的空气动力学相似条件的三维弹性模型,在大型边界层风洞中观测其在均匀流及紊流风场中的各种风致振动现象,用于考察桥梁从施工期各阶段到成桥的抗风性能。是研究桥梁风致振动最精确的试验方法。第3页/共67页8.2 8.2 概述概述 桥梁一般是交通运输的咽喉,在国民经济中占有极重要的地位,应能经受各种自然灾害而不轻易使交通中断。风作为一种主要自然灾害,每年都给人民的生命财产带来巨大损失,作为重要交通设施的桥梁也经常受到风
5、的威胁甚至危害。人们正是在各种桥梁风毁事故发生后开始重视桥梁结构抗风设计,并逐渐形成桥梁抗风设计理论。桥梁的风毁事故最早可以追溯到1818年,苏格兰的Dryburgh Abbey桥首先因风的作用而遭到毁坏。之后,英国的Tay桥因未考虑风的静力作用垮掉,造成75人死亡的惨剧。一系列桥梁的风毁事故,使人们开始重视风的作用,最初人们只认识到考虑静风载的必要性,直到1940年美国Tacoma悬索桥的风毁事故(图81),才使工程界注意到桥梁风致振动的重要性。第4页/共67页图8-1Tacoma悬索桥的风毁事故资料照片第5页/共67页 风对桥梁的作用是一个十分复杂的现象,它受到风的自然特性、结构动力性能以
6、及风与结构的相互作用三方面的制约。由于地表的起伏和各种建筑物的影响,使得近地风的风速和风向及其空间分布都是非定常的(即随时间变化的)和随机的。当这种带有脉动成份的风绕过非流线形截面的桥梁结构时,就会产生旋涡和流动分离,形成复杂的空气作用力。这种作用力可能引起桥梁的振动,而桥梁结构的振动又将引起流场的改变,这种相互作用的机制使得问题更加复杂。从工程抗风设计角度,可以把自然风分解成不随时间变化的平均风和随时间变化的脉动风两部分的叠加,分别考虑它们对桥梁的作用,即静力作用和动力作用两种作用的现象和机制见表1。一、一、风对桥梁作用的现象及作用机制风对桥梁作用的现象及作用机制第6页/共67页表1风对桥梁
7、作用的现象及作用机制分类现象作用机制静力作用静风载引起的内力和变形平均风的静风压产生的阻力、升力和力矩作用静力不稳定扭转发散静(扭转)力矩作用横向屈曲静阻力作用动力作用抖振(紊流风响应)限幅振动紊流风作用自激振动涡振旋涡脱落引起的涡激力作用驰振单自由度发散振动自激力的气动负阻尼效应阻尼驱动扭转颤振古典耦合颤振二自由度自激力的气动刚度驱动第7页/共67页 桥梁抗风设计的目的首先在于保证结构在施工阶段和建成后的营运阶段能够安全承受可能发生的最大风荷载的静力作用和由于风致振动引起的动力作用。因此,首先应掌握架桥地点的风特性,决定桥梁的设计风速,并据此推算风对桥梁的作用,校核抗风安全性,如果有可能出现
8、有害的振动或变形,就应考虑适当的防止对策或进行设计变更。二、二、桥梁抗风设计目的和基本过程桥梁抗风设计目的和基本过程(1)桥梁抗风设计的目的桥梁抗风设计的目的第8页/共67页抗风设计中的重要因素有:(1)风特性参数应通过调查和收集气象资料掌握桥址处的风特性,并采用正确的方法确定合理的参数供抗风设计使用。特别要注意桥址处特殊的地形、地貌和风向条件,以便对常规的取值进行必要的修正。(2)桥梁的动力特性需采用合理的力学模型,并注意边界支承条件的正确处理。对计算结果要通过与相似桥梁的比较检验其合理性和可靠性,其中特别是对于主梁前二阶对称和反对称的竖向弯曲、侧向弯曲和扭转振型要作出正确的判断。(3)桥梁
9、风荷载、颤振临界风速、抖振响应抖振响应的正确预测主要取决于桥梁的动力特性、主梁断面的气动特性和紊流风特性。(2)桥梁抗风设计中的重要因素桥梁抗风设计中的重要因素第9页/共67页 对于一般的大桥,初步设计阶段的抗风分析可采用近似的公式对各方案的静风载内力和气动稳定性进行估算,待方案确定后再通过节段模型的风洞试验测定各种参数,进行抗风验算和风振分析。对于重要桥梁,宜在初步设计阶段通过风洞试验进行气动选型,为确定主梁断面提供依据。在技术设计阶段再对选定的断面方案进行详细的抗风验算和风振分析,还应通过全桥模型的风洞试验对分析结果予以确认。(3 3)桥梁抗风设计的基本过程)桥梁抗风设计的基本过程桥梁抗风
10、设计的过程见图8-2。第10页/共67页结构型式动力特性截面选择假定阻力系数设计风载阵风系数设计风速基本风速气象资料重现期假定Th值颤振风速估计节段模型风洞试验各类风振分析全桥气弹模型试验三分力试验抗风措施抗风措施稳定性验算静力抗风设计算是否要进行全模型验算静力抗风验算检验不安全很安全不安全及格很安全满意不够满意否满意不够满意是及格阶段I阶段II阶段III 图8-2 桥梁抗风设计过程第11页/共67页8.3 8.3 风对桥梁的静力作用风对桥梁的静力作用一、作用在桥梁结构上的平均风荷载一、作用在桥梁结构上的平均风荷载1.主梁静力三分力及静力三分力系数yxFLFVMZFDFHo风体轴坐标系和风轴坐
11、标系a第12页/共67页升力力矩式中:为空气密度,H H为梁高,B B为梁宽,L L为长度,为气流的动压。C CH H、C CV V、C CM M分别为主梁的阻力系数、升力系数、力矩系数,它们由节段模型试验提供。阻力在体轴坐标系下,静力三分力表达为:第13页/共67页升力力矩式中:为空气密度,H H为梁高,B B为梁宽,L L为长度,为气流的动压。C CD D、C CL L、C CM M分别为主梁的阻力系数、升力系数、力矩系数。阻力在风轴坐标系下,静力三分力表达为:第14页/共67页2.桥塔、主缆及拉索上平均风荷载式中:D D为桥墩、塔柱宽度或拉索外径,其余参数意义同上。计算桥塔和拉索承受的风
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 土木工程结构抗风设计 南航8 土木工程 结构 设计 南航
限制150内