九年级圆的基础知识点、经典例题与课后习题.pdf
《九年级圆的基础知识点、经典例题与课后习题.pdf》由会员分享,可在线阅读,更多相关《九年级圆的基础知识点、经典例题与课后习题.pdf(16页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、圆圆一:一:【知识梳理】【知识梳理】1.1.圆的有关概念和性质圆的有关概念和性质(1)(1)圆的有关概念圆的有关概念圆:平面上到定点的距离等于定长的所有点组成的图形叫做圆,其中定点为圆心,定长为半径弧:圆上任意两点间的部分叫做圆弧,简称弧,大于半圆的弧称为优弧,小于半圆的弧称为劣弧弦:连接圆上任意两点的线段叫做弦,经过圆心的弦叫做直径(2 2)圆的有关性质)圆的有关性质圆是轴对称图形;其对称轴是任意一条过圆心的直线;圆是中心对称图形,对称中心为圆心垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的弧推论:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的弧说明:根据垂径定理与推论可知对于一个
2、圆和一条直线来说,如果具备:说明:根据垂径定理与推论可知对于一个圆和一条直线来说,如果具备:过圆心;垂直于弦;平分弦;平分弦所对的优弧;平分过圆心;垂直于弦;平分弦;平分弦所对的优弧;平分弦所对的劣弧。弦所对的劣弧。上述五个条件中的任何两个条件都可推出其他三个结论。上述五个条件中的任何两个条件都可推出其他三个结论。弧、半圆、优弧、劣弧:弧:圆上任意两点间的部分叫做圆弧,简称弧,用符号“”表示,以 CD 为端点的弧记为“”,读作“圆弧 CD”或“弧 CD”。半圆:直径的两个端点分圆成两条弧,每一条弧叫做半圆。优弧:大于半圆的弧叫做优弧劣弧:小于半圆的弧叫做劣弧。(为了区别优弧和劣弧,优弧用三个字
3、母表示。)弧、弦、圆心角的关系:在同圆或等圆中,如果两个圆心角,两条弧,两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等1推论:在同圆或等圆中,同弧或等弧所对的圆周角相等;直径所对的圆周角是直角;90”的圆周角所对的弦是直径等圆:能够完全重合的两个圆叫做等圆,半径相等的两个圆是等圆。等弧:在同圆或等圆中,能够互相重合的弧叫做等弧。圆心角:顶点在圆心的角叫做圆心角.弦心距:从圆心到弦的距离叫做弦心距.(3 3)对圆的定义的理解)对圆的定义的理解:圆是一条封闭曲线,不是圆面;圆由两个条件唯一确定:一是圆心(即定点),二是半径(即定长)2.2.与圆有关的角与圆有关的角(1)圆心角:顶点在圆
4、心的角叫圆心角。圆心角的度数等于它所对的弧的度数(2)圆周角:顶点在圆上,两边分别和圆相交的角,叫圆周角。圆周角的度数等于它所对的弧的度数的一半(3)圆心角与圆周角的关系:同圆或等圆中,同弧或等弧所对的圆周角等于它 所对的圆心角的一半(4)圆内接四边形:顶点都在圆上的四边形,叫圆内接四边形圆内接四边形对角互补,它的一个外角等于它相邻内角的对角3.3.点与圆的位置关系及其数量特征:点与圆的位置关系及其数量特征:如果圆的半径为 r,点到圆心的距离为 d,则点在圆上 d=r;点在圆内 dr;点在圆外 dr.其中点在圆上的数量特征是重点,它可用来证明若干个点共圆,方法就是证明这几个点与一个定点、的距离
5、相等。4.4.确定圆的条件确定圆的条件:1.理解确定一个圆必须的具备两个条件:圆心和半径,圆心决定圆的位置,半径决定圆的大小.1经过一点可以作无数个圆,经过两点也可以作无数个圆,其圆心在这个两点线段的垂直平分线上.2.经过三点作圆要分两种情况:(1)经过同一直线上的三点不能作圆.(2)经过不在同一直线上的三点,能且仅能作一个圆.定理:不在同一直线上的三个点确定一个圆.3.三角形的外接圆、三角形的外心、圆的内接三角形的概念:(1)三角形的外接圆和圆的内接三角形:经过一个三角形三个顶点的圆叫做这个三角形的外接圆,这个三角形叫做圆的内接三角形.(2)三角形的外心:三角形外接圆的圆心叫做这个三角形的外
6、心.(3)三角形的外心的性质:三角形外心到三顶点的距离相等.5.5.直线与圆的位置关系直线与圆的位置关系1.直线和圆相交、相切相离的定义:(1)相交:直线与圆有两个公共点时,叫做直线和圆相交,这时直线叫做圆的割线.(2)相切:直线和圆有惟一公共点时,叫做直线和圆相切,这时直线叫做圆的切线,惟一的公共点做切点.(3)相离:直线和圆没有公共点时,叫做直线和圆相离.2.直线与圆的位置关系的数量特征:设O 的半径为 r,圆心 O 到直线的距离为 d;dr 直线 L 和O 相交.d=r 直线 L 和O 相切.dr 直线 L 和O 相离.3.切线的总判定定理:经过半径的外端并且垂直于这个条半径的直线是圆的
7、切线.4.切线的性质定理:圆的切线垂直于过切点的半径.推论 1 经过圆心且垂直于切线的直线必经过切点.推论 2 经过切点且垂直于切线的直线必经过圆心.1分析性质定理及两个推论的条件和结论间的关系,可得如下结论:如果一条直线具备下列三个条件中的任意两个,就可推出第三个.垂直于切线;过切点;过圆心.5.三角形的内切圆、内心、圆的外切三角形的概念.和三角形各边都相切的圆叫做三角形的内切圆,内切圆的圆心叫做三角形的内心,这个三角形叫做圆的外切三角形.6.三角形内心的性质:(1)三角形的内心到三边的距离相等.(2)过三角形顶点和内心的射线平分三角形的内角.由此性质引出一条重要的辅助线:连接内心和三角形的
8、顶点,该线平分三角形的这个内角.6.6.圆和圆的位置关系圆和圆的位置关系.1.外离、外切、相交、内切、内含(包括同心圆)这五种位置关系的定义.(1)外离:两个圆没有公共点,并且每个圆上的点都在另一个圆的外部时,叫做这两个圆外离.(2)外切:两个圆有惟一的公共点,并且除了这个公共点以外,每个圆上的点都在另一个圆的外部时,叫做这两个圆外切.这个惟一的公共点叫做切点.(3)相交:两个圆有两个公共点,此时叫做这个两个圆相交.(4)内切:两个圆有惟一的公共点,并且除了这个公共点以外,一个圆上的都在另一个圆的内部时,叫做这两个圆内切.这个惟一的公共点叫做切点.(5)内含:两个圆没有公共点,并且一个圆上的点
9、都在另一个圆的内部时,叫做这两个圆内含.两圆同心是两圆内的一个特例.2.两圆位置关系的性质与判定:(1)两圆外离 dR+r(2)两圆外切 d=R+r(3)两圆相交 R-rdR+r(Rr)(4)两圆内切 d=R-r(Rr)(5)两圆内含 dr)13.相切两圆的性质:如果两个圆相切,那么切点一定在连心线上.4.相交两圆的性质:相交两圆的连心线垂直平分公共弦.7.7.圆内接四边形圆内接四边形若四边形的四个顶点都在同一个圆上,这个四边形叫做圆内接四边形,这个圆叫做这个四边形的外接圆.圆内接四边形的特征:圆内接四边形的对角互补;圆内接四边形任意一个外角等于它的内错角.8.8.弧长及扇形的面积弧长及扇形的
10、面积1.圆周长公式:圆周长 C=2R(R 表示圆的半径)2.弧长公式:n R弧长l(R 表示圆的半径,n 表示弧所对的圆心角的度数)1803.扇形定义:一条弧和经过这条弧的端点的两条半径所组成的图形叫做扇形.4.弓形定义:由弦及其所对的弧组成的图形叫做弓形.弓形弧的中点到弦的距离叫做弓形高.5.圆的面积公式.圆的面积SR2(R 表示圆的半径)6.扇形的面积公式:扇形的面积S扇形n R2(R表示圆的半径,n表示弧所对的圆心角的度数)360弓形的面积公式:(如图 5)ABOAOBOACBCS5(1)当弓形所含的弧是劣弧时,S弓形扇形图S三角形C1(2)当弓形所含的弧是优弧时,S弓形 S扇形 S三角
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 九年级 基础 知识点 经典 例题 课后 习题
限制150内