2022届全国高考压轴卷数学(新高考I卷).pdf
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_05.gif)
《2022届全国高考压轴卷数学(新高考I卷).pdf》由会员分享,可在线阅读,更多相关《2022届全国高考压轴卷数学(新高考I卷).pdf(10页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、-1-2022 新高考 I 卷高考压轴卷 数学 一、单项选择题:本题共 8 小题,每个小题 5 分,共 40 分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集 U=R,集合1,3A,14,UC B ,则 AB=()A.1,1 B.1,3 C.1,3 D.1,4 2.已知命题p:0Rx,00e10 xx,则p为()A.0Rx,00e10 xx B.0Rx,00e10 xx C.Rx,e10 xx D.Rx,e10 xx 3.已知复数 z 满足1 i13iz(i 是虚数单位),则复数 z 的共轭复数z的虚部为()A.1 B.i C.i D.1 4.现有四名高三学生准备高考后到长
2、三角城市群(包括:上海市以及江苏省、浙江省、安徽省三省部分城市,简称“三省一市”)旅游,假设每名学生均从上海市、江苏省、浙江省、安徽省这四个地方中随机选取一个去旅游,则恰有一个地方未被选中的概率为()A.2764 B.916 C.81256 D.716 5.若62mxx的展开式中3x项的系数是 240,则实数 m 的值是()A.2 B.2 C.2 D.2 6.在 ABC 中,角 A、B、C 的对边分别为 a、b、c,已知 A3,a3,b1,则 c()A1 B2 C31 D3 7.阿基米德(Archimedes,公元前 287 年一公元前 212 年)是古希腊伟大的数学家物理学家和天文学家.他推
3、导出的结论“圆柱内切球体的体积是圆柱体积的三分之二,并且球的表面积也是圆柱表面积的三分之二”是其毕生最满意的数学发现,后人按照他生前的要求,在他的墓碑上刻着一个圆柱容器里放了一个球,如图,该球顶天立地,四周碰边,圆柱的底面直径与高都等于球的直径,若球的体积为 36,则圆柱的表面积为()-2-A.36 B.45 C.54 D.63 8.已知函数 f(x)0,)21(20,142xxxxx,若关于 x 的方程(f(x)1)(f(x)m)0 恰有 5 个不同的实数根,则实数 m 的取值范围是()A(1,2)B(1,5)C(2,3)D(2,5)二多项选择题:本题共 4 小题,每小题 5 分,共 20
4、分.在每小题给出的选项中,有多项符合题目要求的.全部选对的得 2 分,有选错的得 0 分.9.下列说法中正确的是()A.对于向量a,b,c,有 a bcab c B.向量11,2e ,25,7e 能作为所在平面内的一组基底 C.设m,n为非零向量,则“存在负数,使得mn”是“0m n”的充分而不必要条件 D.在 ABC 中,设 D 是 BC 边上一点,且满足2CDDB,,CDABACR,则0 10.以下四个命题表述正确的是()A.直线(1)(21)3()mxmymR恒过定点(6,3)B.已知直线l过点(2,4)P,且在,x y轴上截距相等,则直线l的方程为60 xy C.,aRbR,“直线21
5、0axy 与直线(1)210axay 垂直”是“3a”的必要不充分条件 D.直线12:1 0,:1 0l x ylx y 的距离为2 11.某班级的全体学生平均分成 6 个小组,且每个小组均有 4 名男生和多名女生.现从各个小组中随机抽取一名同学参加社区服务活动,若抽取的 6 名学生中至少有一名男生的概率为728729,则()A.该班级共有 36 名学生 B.第一小组的男生甲被抽去参加社区服务的概率为23 -3-C.抽取的 6 名学生中男女生数量相同的概率是160729 D.设抽取的 6 名学生中女生数量为X,则 43D X 12.已知直线 l:2x+y2a0(a0),M(s,t)是直线 l
6、上的任意一点,直线 l 与圆 x2+y21 相切下列结论正确的为()A22st的最小值为 1 B当 s0,t0 时,21st的最小值为9 55 C22sts的最小值等于22sts的最小值 D22sts的最小值不等于22sts的最小值 一填空题:本题共 4 个小题,每个小题 5 分,共 20 分.13.已知函数 22,0ln,0 xx xfxxx,则 1ff_ 14.已知函数()cos()(0,0,0)2f xAxA 的图象过点(0,12),最小正周期为23,且最小值为1.若,6xm,()f x的值域是3 1,2 ,则 m 的取值范围是_.15.已知直线 l1:xy+30,l2:2x+y0 相交
7、于点 A,则点 A 的坐标为 ,圆 C:x2+y22x+4y+10,过点 A 作圆 C 的切线,则切线方程为 16.在数列an中,若函数 f(x)sin2x+22cos2x 的最大值是 a1,且 an(an+1an2)n2n2,则an_ 四、解答题:本题共 6 小题,共 70 分.,解答题应写出文字说明、证明过程或演算步骤)17.(本题 10 分)在 ABC 中,35ab,且ab,再从条件、条件这两个条件中选择一个作为己知,求:条件:2cos10A,2cos2B;条件:4 2c,3cos5C (1)求a,b的值;(2)求sinC,ABCS 18.(本题 12 分)已知等差数列an满足 a36,
8、a4+a620,an的前 n 项和为 Sn -4-()求 an及 Sn;()令 bnnS1,求数列bn的前 n 项和 Tn 19.(本题 12 分)元旦期间某牛奶公司做促销活动一箱某品牌牛奶 12 盒,每盒牛奶可以参与刮奖中奖得现金活动,但其中只有一些中奖已知购买一盒牛奶需要 5 元,若有中奖,则每次中奖可以获得代金券8 元(可即中即用)顾客可以在一箱牛奶中先购买 4 盒,然后根据这 4 盒牛奶中奖结果决定是否购买余下 8 盒设每盒牛奶中奖概率为 p(0p1),且每盒牛奶是否中奖相互独立(1)若 p41,顾客先购买 4 盒牛奶,求该顾客至少有一盒中奖的概率(2)设先购买的 4 盒牛奶恰好有一盒
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022 全国 高考 压轴 数学 新高
![提示](https://www.taowenge.com/images/bang_tan.gif)
限制150内