《风险评价教学》PPT课件.ppt
《《风险评价教学》PPT课件.ppt》由会员分享,可在线阅读,更多相关《《风险评价教学》PPT课件.ppt(69页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、Widely usedDistributionsinRiskWhatisthePoissonDistribution?WhatistheWeibullDistribution?风险评价基础(第二讲)Simeon Denis Poisson n“Researches on the probability of criminal and civil verdicts”1837(犯罪和民法裁决).nlooked at the form of the binomial distribution when the number of trials was large(试验的次数较大时).nHe deri
2、ved the cumulative Poisson distribution as the limiting case of the binomial when the chance of success tend to zero(成功的机会趋于0).PoissonDistributionPOISSON(x,mean,cumulative)nXisthenumberofevents.nMeanistheexpectednumericvalue.nCumulativeisalogicalvaluethatdeterminestheformoftheprobabilitydistribution
3、returned.IfcumulativeisTRUE,POISSONreturnsthecumulativePoissonprobabilitythatthenumberofrandomeventsoccurringwillbebetweenzeroandxinclusive;ifFALSE,itreturnsthePoissonprobabilitymassfunctionthatthenumberofeventsoccurringwillbeexactlyx.PoissonandbinomialDistributionDefinitionsA binomial probability d
4、istribution results from a procedure that meets all the following requirements:1.The procedure has a fixed number of trials.2.The trials must be independent.(The outcome of any individual trial doesnt affect the probabilities in the other trials.)3.Each trial must have all outcomes classified into t
5、wo categories.4.The probabilities must remain constant for each trial.Notation for Binomial Probability DistributionsS and F(success and failure)denote two possible categories of all outcomes;p and q will denote the probabilities of S and F,respectively,soP(S)=p(p=probability of success)P(F)=1 p=q(q
6、=probability of failure)Notation(cont)n denotes the number of fixed trials.x denotes a specific number of successes in n trials,so x can be any whole number between 0 and n,inclusive.p denotes the probability of success in one of the n trials.q denotes the probability of failure in one of the n tria
7、ls.P(x)denotes the probability of getting exactly x successes among the n trials.Important Hintsv Be sure that x and p both refer to the same category being called a success.v When sampling without replacement,the events can be treated as if they were independent if the sample size is no more than 5
8、%of the population size.(That is n is less than or equal to 0.05N.)Methods for Finding ProbabilitiesWe will now present three methods for finding the probabilities corresponding to the random variable x in a binomial distribution.Method 1:Using the Binomial Probability Formula P(x)=px qn-x(n x)!x!n!
9、for x=0,1,2,.,nwheren=number of trialsx=number of successes among n trialsp=probability of success in any one trialq=probability of failure in any one trial(q=1 p)Method 2:UsingTable A-1 in Appendix APart of Table A-1 is shown below.With n=4 and p=0.2 in the binomial distribution,the probabilities o
10、f 0,1,2,3,and 4 successes are 0.410,0.410,0.154,0.026,and 0.002 respectively.Poisson and binominal Distribution Poisson&binominalDistributionnAsalimittobinomialwhennislargeandpissmall.nAtheorembySimeonDenisPoisson(1781-1840).Parameterl=np=expectedvaluenAsnislargeandpissmall,thebinomialprobabilitycan
11、beapproximatedbythePoissonprobabilityfunctionnP(X=x)=e-llx/x!,wheree=2.71828nIonchannelmodeling:n=numberofchannelsincellsandpisprobabilityofopeningforeachchannel;BinomialandPoissonapproximationAdvantage:Noneedtoknownandpestimatetheparameterl fromdata200 yearly reports of death by horse-kick from10 c
12、avalry corps over a period of 20 years in 19th century by Prussian officials(骑兵部队).Pool the last two cells and conduct a chi-square test to see if Poisson model is compatible with data or not.Degree of freedom is 4-1-1=2.Pearsons statistic=.304;P-value is.859(you can only tell it is between.95 and.2
13、 from table in the book);accept null hypothesis,data compatible with model RutherfoldandGeiger(1910)卢瑟福和盖革nPolonium(钚)sourceplacedashortdistancefromasmallscreen.Foreachof2608eighth-minuteintervals,theyrecordedthenumberofalphaparticlesimpingingonthescreenMedical Imaging:X-ray,PET scan(positron emissi
14、on tomography),MRI(Magnetic Resonance Imaging )(核磁共振检查)Other related application inPoisson process for modeling number of event occurrences in a spatial(空间的)or temporal domain(时间的区域)Homogeneity(同一性):rate of occurrence is uniformIndependent occurrence in non-overlapping areas(非叠加)PoissonDistributionn
15、AdiscreteRVX followsthePoissondistributionwithparameterlifitsprobabilitymassfunctionis:nWideapplicabilityinmodelingthenumberofrandomeventsthatoccurduringagiventimeintervalThe Poisson Process:nCustomersthatarriveatapostofficeduringadaynWrongphonecallsreceivedduringaweeknStudentsthatgototheinstructors
16、officeduringofficehoursnandpacketsthatarriveatanetworkswitchPoissonDistribution(cont.)nMeanandVariancenProof:SumofPoissonRandomVariablesnXi,i=1,2,n,areindependentRVsnXifollowsPoissondistributionwithparameterlinPartialsumdefinedas:nSnfollowsPoissondistributionwithparameterlPoissonApproximationtoBinom
17、ialnBinomialdistributionwithparameters(n,p)nAsnandp0,withnp=lmoderate,binomialdistributionconvergestoPoissonwithparameterlnProof:ModelingArrivalStatisticsnPoissonprocesswidelyusedtomodelpacketarrivalsinnumerousnetworkingproblemsnJustification:providesagoodmodelforaggregatetrafficofalargenumberof“ind
18、ependent”usersJMostimportantreasonforPoissonassumption:Analytictractability(分析处理)ofqueueingmodels(排队模型)。POISSONDISTRIBUTIONn例题:如果电话号码本中每页的错误个数为2.3个,K为每页中错误数目的随机变量。(a)画出它的概率密度和累积分布图;(b)求足以满概括50%页数中差错误的K。n根据公式:n可以求出等的概率。关于概率分布曲线以及累计概率分布曲线的绘制和分析的问题:(1)离散分布;(2)其代表的具体意义。n例题:某单位每月发生事故的情况如下:n每月的事故数012345n频
19、数(月数)27128210n注意:一共是50个月的统计资料:n根据如上的数据,认为n(a)最有可能的是每月发生一次事故,这正确吗?n(b)在均值上下各的范围是多少?n(a)解:每月发生一次事故概率为:nn(b)在均值上下各的范围是多少?应用泊松分布解题的步骤如下:应用泊松分布解题的步骤如下:检查前提假设是否成立。最主要的条件是在每一标准单位内所指的事件发生的概率是常数;泊松分布用来泊松分布用来计算标准单位(一张照片、一只机翼、一块材料等等)计算标准单位(一张照片、一只机翼、一块材料等等)内的缺陷数、交通死亡人数等等,在排队理论中占有内的缺陷数、交通死亡人数等等,在排队理论中占有重要的地位。重要
20、的地位。n确定变量,求出值;n求对应个别K的泊松分布概率;n求若干个K的泊松分布概率的总和;n求泊松分布的均值和方差;n画出概率分布和累积分布图。Dr.WallodiWeibullnThe Weibull distribution is by far the worldsmostpopularstatisticalmodelforlifedata(寿命数据).It is also used in many otherapplications,suchasweatherforecastingandfittingdataofallkinds(数据拟合).Amongallstatistical te
21、chniques it may be employed forengineeringanalysiswithsmallersamplesizesthananyothermethod.Havingresearchedandappliedthismethodforalmosthalfacentury。nWaloddiWeibullwasbornonJune18,1887.His family originally came fromSchleswig-Holstein,atthattimecloselyconnectedwithDenmark.Therewereanumberoffamoussci
22、entistsandhistoriansinthefamily.Hisowncareerasanengineerandscientistiscertainlyanunusualone.nHewasamidshipmanintheRoyalSwedishCoast Guard in 1904 was promoted tosublieutenantin1907,Captainin1916,andMajorin1940.HetookcoursesattheRoyalInstitute of Technology where he laterbecameafullprofessor(1924)and
23、graduatedin1924.HisdoctorateisfromtheUniversityofUppsalain1932.HeworkedinSwedish and German industries as aninventor(ball and roller bearings,electrichammer,)andasaconsultingengineer.MyfriendsatSAABinTrollhattenSwedengavemesomeofWeibullspapers.SAABisoneofmanycompaniesthatemployedWeibullasaconsultant
24、.BackgroundBackgroundWWaloddi Weibull(1887-1979)aloddi Weibull(1887-1979)invented theinvented the Weibull Weibull distribution in1937.distribution in1937.His 1951 paper represents the culmination(His 1951 paper represents the culmination(顶顶峰峰 )of his work in reliability analysis.of his work in relia
25、bility analysis.The U.S.Air Force recognized the merit of Weibulls The U.S.Air Force recognized the merit of Weibullsmethods and funded his research to 1975.methods and funded his research to 1975.Leonard Johnson at Genral Motors,improved Weibulls Leonard Johnson at Genral Motors,improved Weibulls m
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 风险评价教学 风险 评价 教学 PPT 课件
限制150内