《集合论与无穷》PPT课件.ppt
《《集合论与无穷》PPT课件.ppt》由会员分享,可在线阅读,更多相关《《集合论与无穷》PPT课件.ppt(16页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、07级数学试点班王渊1.问题的引入有限和无穷w香迪悖论w小说香迪传的讲述者香迪曾说自己用了两年时间来记录其生活中头两天的历史,然后香迪抱怨说,按照这种速度他永远也写不完自己的传记。在这一情节启发下,数学家罗素巧妙利用“无限未来”的概念提出了香迪悖论:如果香迪可以永远活下去,而且坚持不懈的写下去,那么,即是他的一生始终像开端那样充满需要记录的内容,他的传记也不会遗留任何部分。w罗素的论证大致如下:假定香迪生于1700年1月1日,而写作开始于1720年1月1日。其写作进程如下:w写作的年份涵盖的事件17201700年1月1日17211700年1月2日17221700年1月3日但是,每一天对应于一年
2、,每一年对应于一天。对于任何一天,在未来都由指定的一年去记录它,绝无例外。“香迪的传记不会遗漏任何部分。”罗素的香迪悖论在常识看来不可思议。事实上,当我们逐渐了解集合论中的无穷观点后,就可以明白这一论证是正确的,并无荒谬之处。w无穷集合的概念w集合论的基础w集合论的意义w无穷集合(元素个数无穷)一个“矛盾”的集合wAristotle(亚里士多德)考虑过无穷集合,他认为潜在的无穷(大)需要和真实的无穷(大)加以区别。w微积分重建数学基础微积分理论遇到严重的逻辑困难对微积分基础的严密论证成为集合论产生的一个重要原因2.无穷集合的概念w在重建微积分理论的过程中,Bolzano(波尔查诺)是第一个朝着
3、建立集合的明确理论方向采取了积极步骤的人,他维护了集合的存在,并强调了两个集合等价的概念,即两个集合元素间的一一对应关系。他注意到无限集合的部分或子集可以等价于整体,例如0到5之间的实数可以通过公式与0到12间的实数构成一一对应,虽然和第二个数集包含了第一个数集。但是他同样也遇到了一些问题在他看来属于悖论的,因此他认为这些不必深入研究。3.集合论的基础xy0012.42.560.51.2512w随着实数不可列性质的确立,康托又提出一个新的,更大胆的问题。1874年,他考虑了能否建立平面上的点和直线上的点之间的一一对应。从直观上说,平面上的点显然要比线上的点要多得多。康托自己起初也是这样认识的。
4、但三年后,康托宣布:平面和直线之间可以建立一一对应,证明简述为w只需证明区间(0,1)和单位正方形上的点一样多即可。在区间(0,1)内的点都可以表示成一个无穷小数,比如0.2574892如果是1/4,可以表示成0.25000000。以0.257489257621为例w我们把它的奇数位和偶数位分别取出来得到两个新的数0.278272和0.5495611845.3.31918.1.6wGeorgCantor集合论的创立者是GeorgCantor,Cantor对集合所下的定义是一些确定的,不同东西的总体,这些东西使人能意识到并判断一个给定的东西是否属于这个总体。对Cantor来说,如果一个集合能够和
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 集合论与无穷 集合论 无穷 PPT 课件
限制150内