工程科技有限元分析基础.pptx
《工程科技有限元分析基础.pptx》由会员分享,可在线阅读,更多相关《工程科技有限元分析基础.pptx(194页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、会计学1工程科技有限元分析基础工程科技有限元分析基础2内容结构内容结构内容结构内容结构第一章第一章 概述概述第六章第六章 空间问题的有限单元法空间问题的有限单元法第七章第七章 轴对称旋转单元轴对称旋转单元第五章第五章 等参元等参元第四章第四章 平面结构问题的有限单元法平面结构问题的有限单元法第三章第三章 杆系结构静力分析的有限单元法杆系结构静力分析的有限单元法第二章第二章 结构几何构造分析结构几何构造分析第1页/共193页31.1 有限单元法的概念有限单元法的概念1.2 有限单元法基本步骤有限单元法基本步骤1.3 工程实例工程实例第一章第一章 概述概述第2页/共193页4第一章第一章第一章第一
2、章 概述概述概述概述1.1 有限单元法的概念有限单元法的概念基本思想基本思想:借助于数学和力学知识,利用计算机技术而解决工程技术问题。Finite Element Method-_FEMFinite Element Analysis 第3页/共193页5第一章第一章第一章第一章 概述概述概述概述三大类型三大类型(按其推导方法分):(1)直接刚度法直接刚度法(简称直接法简称直接法):根据单元的物理意义,建立有关场变量表示的单元性质方程。(2)变分法变分法 直接从求解泛函的极值问题入手,把泛函的极植问题规划成线性代数方程组,然后求其近似解的一种计算方法。(3)加权余量法加权余量法 直接从控制方程中
3、得到有限单元方程,是一种近似解法。第4页/共193页61.2 有限单元法基本步骤有限单元法基本步骤(1)待求解域离散化待求解域离散化(2)选择插值函数选择插值函数(3)形成单元性质的矩阵方程形成单元性质的矩阵方程(4)形成整体系统的矩阵方程形成整体系统的矩阵方程(5)约束处理,求解系统方程约束处理,求解系统方程(6)其它参数计算其它参数计算第一章第一章第一章第一章 概述概述概述概述第5页/共193页7图1-2 工程问题有限单元法分析流程 第一章第一章第一章第一章 概述概述概述概述第6页/共193页81.3 工程实例工程实例 (a)铲运机举升工况测试 第一章第一章第一章第一章 概述概述概述概述(
4、b)铲运机工作装置插入工况有限元分析图1-3 WJD-1.5型电动铲运机第7页/共193页9 第一章第一章第一章第一章 概述概述概述概述 (a)KOMATSU液压挖掘机 (b)某液压挖掘机动臂限元分析图1-4 液压挖掘机 第8页/共193页10 图1-5 驾驶室受侧向力应力云图 图1-6 接触问题结构件应力云图 第一章第一章第一章第一章 概述概述概述概述第9页/共193页11 第一章第一章第一章第一章 概述概述概述概述 图1-7 液压管路速度场分布云图 图1-8 磨片热应力云图 图1-9 支架自由振动云图 第10页/共193页12第二章第二章第二章第二章 结构几何构造分析结构几何构造分析结构几
5、何构造分析结构几何构造分析2.1 结构几何构造的必要性结构几何构造的必要性 2.2 结构计算基本知识结构计算基本知识2.3 结构几何构造分析的自由度与约束结构几何构造分析的自由度与约束2.4 自由度计算公式自由度计算公式 第11页/共193页132.1 结构几何构造的必要性结构几何构造的必要性 结构是用来承受和传递载荷的。结构是用来承受和传递载荷的。如果不计材料的应变,在其受到任意载荷作用时其形状和位置没有发生刚体位移时,称之为几何不变结构或几何稳定结构,反之则称为几何可变结构或几何不稳定结构。几何可变结构不能承受和传递载荷。对结构进行几何构造分析也是能够对工程结构作有限单元法分析的必要条件。
6、第二章第二章第二章第二章 结构几何构造分析结构几何构造分析结构几何构造分析结构几何构造分析第12页/共193页14(a)结构本身可变 (b)缺少必要的约束条件 (c)约束汇交于一点 图2-1 几何可变结构 第二章第二章第二章第二章 结构几何构造分析结构几何构造分析结构几何构造分析结构几何构造分析第13页/共193页152.2 结构计算基本知识结构计算基本知识结构计算简图结构计算简图 实际结构总是很复杂的,完全按照结构的实际情况进行力学分析是不可能的,也是不必要的,因此在对实际结构进行力学计算之前,必须将其作合理的简化,使之成为既反映实际结构的受力状态与特点,又便于计算的几何图形。这种被抽象化了
7、的简单的理想图形称之为结构的计算简图,有时也称为结构的力学模型。结构计算所常用的结点和支座的简化形式结构计算所常用的结点和支座的简化形式:(1)结点:铰结点;刚结点;混合结点。(2)支座:活动铰支座;固定铰支座;固定支座;定向支座 第二章第二章第二章第二章 结构几何构造分析结构几何构造分析结构几何构造分析结构几何构造分析第14页/共193页16结构的分类与基本特征结构的分类与基本特征(1)按结构在空间的位置分 结构可分为平面结构和空间结构两大类(2)按结构元件的几何特征分 杆系结构:梁、拱、桁架、刚架、桁构结构等。板壳结构 实体结构实体结构的长、宽、高三个尺寸都很 大,具有同一量级。混合结构
8、第二章第二章第二章第二章 结构几何构造分析结构几何构造分析结构几何构造分析结构几何构造分析第15页/共193页17(3)按结构自由度分 静定结构自由度为零的几何不变结构。其特征:a.静定结构的内力及支座反力可全部由平衡方程式求出,并且解答是唯一的。b.静定结构的内力及支座反力与材料的性质和截面特征(几何尺寸,形状)无关。c.静定结构上无外载荷作用时,其内力及支座反力全为零。d.若静定结构在载荷作用下,结构中的某一部分能不依靠于其它部分,独立地与载荷保持平衡时,则其它部分的内力为零。e.当将一平衡力系作用于静定结构的一个几何不变部分时,结构的其余部分都无内力产生。f.当静定结构中的一个内部几何不
9、变部分上的载荷作等效变换时,其余部分的内力不变。g.当静定结构中的一个内部儿何不变部分作构造改变时,其余部分的内力不变。第二章第二章第二章第二章 结构几何构造分析结构几何构造分析结构几何构造分析结构几何构造分析第16页/共193页18 超静定结构自由度大于零的几何不变结构。其特性:a.超静定结构仅仅满足静力平衡条件的解有无穷多个,但同时满足结构变形协调条件的解仅有一个。b.超静定结构的内力及支反力不仅与载荷有关,而且与林料的力学性能和截面尺寸有关。c.超静定结构在非载荷因素作用下,如温度变化、支座沉陷、制造误差等而产生的位移会受到多余约束的限制,结构内必将产生内力。d.超静定结构中的多余约束破
10、坏后,结构仍然保持几何不变性,因而仍有一定的承载能力,不致整个结构遭受破坏。e.超静定结构由于具有多余的约束,因而比相应的静定结构具有较大的刚度和稳定性,在载荷作用下,内力分布也较均匀,且内力峰值也较静定结构为小。第二章第二章第二章第二章 结构几何构造分析结构几何构造分析结构几何构造分析结构几何构造分析第17页/共193页19 第二章第二章第二章第二章 结构几何构造分析结构几何构造分析结构几何构造分析结构几何构造分析(1)具有奇数跨的刚架 正对称载荷作用结构对称性的利用结构对称性的利用 对称结构在正对称载荷下,对称轴截面上只能产生正对称的位移,反对称的位移为零;对称结构在反对称载荷下,对称轴截
11、面上只有反对称的位移,正对称的位移为零。(a)对称刚架 (b)变形状态分析 (c)对称性利用 图2-22对称性利用示意图 第18页/共193页20 对称刚架承受反对称载荷作用 (a)对称刚架 (b)变形状态分析 (c)反对称性利用 图2-23 反对称性利用示意图 第二章第二章第二章第二章 结构几何构造分析结构几何构造分析结构几何构造分析结构几何构造分析第19页/共193页21 (a)变形状态分析 (b)对称性利用 图2-24对称性利用示意图(2)具有偶数跨的刚架 正对称载荷作用 第二章第二章第二章第二章 结构几何构造分析结构几何构造分析结构几何构造分析结构几何构造分析第20页/共193页22
12、反对称载荷作用(b)反对称性状态分析 第二章第二章第二章第二章 结构几何构造分析结构几何构造分析结构几何构造分析结构几何构造分析(a)变形状态分析 (c)反对称性受力分析 (d)反对称性利用 图2-25对称性利用示意图第21页/共193页23 2.3 结构几何构造分析的自由度与约束结构几何构造分析的自由度与约束(1)自由度自由度指结构在所在空间运动时,可以独立改变的几何参数的数目,也就是确定该结构位置时所需的独立参数的数目。(2)约束约束 指减少结构自由度的装置,即限制结构结构运动的装置。a.支座链杆的约束 b.铰的约束:单铰;复铰;完全铰与不完全铰。第二章第二章第二章第二章 结构几何构造分析
13、结构几何构造分析结构几何构造分析结构几何构造分析第22页/共193页24 第二章第二章第二章第二章 结构几何构造分析结构几何构造分析结构几何构造分析结构几何构造分析(1)桁架自由度计算公式桁架自由度计算公式 一个平面体系的自由度计算结果,不外下述三一个平面体系的自由度计算结果,不外下述三种可能:种可能:a.W0 表明结构缺少必要的约束,可运动,故结构必定是几何可变体系。b.W=0 表明结构具有保证几何不变所需的最少的约束数。c.W0 表明结构具有多余约束。2.4 自由度计算公式自由度计算公式平面桁架 空间桁架 桁架中的结点数为j,杆件数为g,支座链杆数为z,则桁架的自由度W 为(2)平面混合结
14、构的自由度计算公式平面混合结构的自由度计算公式第23页/共193页25 3.1 结构离散与向量表示结构离散与向量表示 第三章第三章 杆系结构静力分析的有限单元法杆系结构静力分析的有限单元法3.2 位移函数及单元的刚度矩阵位移函数及单元的刚度矩阵 3.3 坐标变换及单元刚度矩阵坐标变换及单元刚度矩阵 3.4 整体刚度矩阵整体刚度矩阵 3.5 约束处理及求解约束处理及求解 3.6 计算示例计算示例 3.7 ANSYS桁架结构计算示例桁架结构计算示例3.8ANSYS刚架结构计算示例刚架结构计算示例 第24页/共193页263.1 结构离散与向量表示结构离散与向量表示 工程上许多由金属构件所组成的结构
15、,如塔式桁构支承架、起重机起重臂架、钢结构桥梁、钢结构建筑等可以归结为杆系结构。杆系结构按各杆轴线及外力作用线在空间的位置分为平面杆系和空间杆系结构。杆系结构可以由杆单元、梁单元组成。(a)Liebherr塔式起重机 (b)Liebherr履带式起重机(c)钢结构桥梁 (d)埃菲尔铁塔 图3-1 杆系结构第三章第三章 杆系结构静力分析的有限单元法杆系结构静力分析的有限单元法第25页/共193页27结构离散化结构离散化 由于杆系结构本身是由真实杆件联接而成,故离散化比较简单,一般将杆件或者杆件的一段(一根杆又分为几个单元)作为一个单元,杆件与杆件相连接的交点称为结点。杆系结构的离散化的要点可参考
16、如下:a.杆件的转折点、汇交点、自由端、集中载荷作用点、支承点以及沿杆长截面突变处等均可设置成结点。这些结点都是根据结构本身特点来确定的。b.结构中两个结点间的每一个等截面直杆可以设置为一个单元。变换为作用在结点上的等效结点载荷。第三章第三章 杆系结构静力分析的有限单元法杆系结构静力分析的有限单元法第26页/共193页28 c.变截面杆件可分段处理成多个单元,取各段中点处的截面近似作为该单元的截面,各单元仍按等截面杆进行计算。d.对曲杆组成的结构,可用多段折线代替,每端折线为一个单元。如若提高计算精度,也可以在杆件中间增加结点。e.在有限元法计算中,载荷作用到结点上。当结构有非结点载荷作用时,
17、应该按照静力等效的原则将其第三章第三章 杆系结构静力分析的有限单元法杆系结构静力分析的有限单元法(a)结点载荷处理方式 (b)等效结点载荷处理方式图3-2杆系结构离散化示意图 第27页/共193页29坐标系坐标系 图3-3 坐标系示意图 为了建立结构的平衡条件,对结构进行整体分析,尚需要建立一个对每个单元都适用的统一坐标系,即结构坐标系或称之为整体坐标系、总体坐标系。第三章第三章 杆系结构静力分析的有限单元法杆系结构静力分析的有限单元法第28页/共193页30向量表示向量表示 在有限单元法中力学向量的规定为:当线位移及相应力与坐标轴方向一致时为正,反之为负;转角位移和力矩,按右手法则定出的矢量
18、方向若与坐标轴正向相一致时为正。对于任意方向的力学向量,应分解为沿坐标轴方向的分量。(a)刚架结构示意图 (b)结点位移和结点力分向量 图3-4 平面刚架分析示意图 第三章第三章 杆系结构静力分析的有限单元法杆系结构静力分析的有限单元法第29页/共193页31结点位移列向量为 单元e结点位移列向量为 结点力向量为 单元e结点力列向量为 第三章第三章 杆系结构静力分析的有限单元法杆系结构静力分析的有限单元法第30页/共193页323.2 位移函数及单元的刚度矩阵位移函数及单元的刚度矩阵 轴向拉压杆单元的位移的函数轴向拉压杆单元的位移的函数 有限单元法分析中,虽然对不同结构可能会采取不同的单元类型
19、,采用的单元的位移模式不同,但是构建的位移函数的数学模型的性能、能否真实反映真实结构的位移分布规律等,直接影响计算结果的真实性、计算精度及解的收敛性。为了保证解的收敛性,选用的位移函数应当满足下列要求:a.单元位移函数的项数,至少应等于单元的自由度数。它的阶数至少包含常数项和一次项。至于高次项要选取多少项,则应视单元的类型而定。第三章第三章 杆系结构静力分析的有限单元法杆系结构静力分析的有限单元法第31页/共193页33 由单元结点位移,确定待定系数项 当 时,当 时,所以 用结点位移表示 其中 、分别表示当 ,时;,时的单元内的轴向位移状态,故称为轴向位移形函数。第三章第三章 杆系结构静力分
20、析的有限单元法杆系结构静力分析的有限单元法 b.单元的刚体位移状态和应变状态应当全部包含在位移函数中。c.单元的位移函数应保证在单元内连续,以及相邻单元之间的位移协调性。第32页/共193页34梁单元平面弯曲的位移函数梁单元平面弯曲的位移函数 梁单元平面弯曲仅考虑结点的四个位移分量 ,由材料力学知,各截面的转角:故梁单元平面弯曲的位移表达式可分为仅包含四个待定系数 ,的多项式 单元结点位移条件 当 时 ,当 时 ,第三章第三章 杆系结构静力分析的有限单元法杆系结构静力分析的有限单元法第33页/共193页35称为形函数矩阵。第三章第三章 杆系结构静力分析的有限单元法杆系结构静力分析的有限单元法第
21、34页/共193页36单元的应力应变单元的应力应变 在弹性范围内,并且不考虑剪力的影响时,平面刚架单元内任一点的轴向线应变由两部分组成,即轴向应变与弯曲应变之和,其轴向应变与平面桁架轴向应变相同。轴向应变为 弯曲应变为 y为梁单元任意截面上任意点至中性轴(x轴)的距离。得出平面刚架单元应变 图3-5 弯曲应变计算示意图 则平面刚架梁单元的应变转换矩阵。第三章第三章 杆系结构静力分析的有限单元法杆系结构静力分析的有限单元法第35页/共193页37平面刚架梁单元的刚度矩阵平面刚架梁单元的刚度矩阵 梁单元的i,j结点发生虚位移为 单元内相应的虚应变应为 由虚功原理有 由于结点虚位移 的任意性,故上式
22、可写成 上式称为局部坐标下的平面刚架单元的刚度方程,简称为单刚。第三章第三章 杆系结构静力分析的有限单元法杆系结构静力分析的有限单元法第36页/共193页38 横截面积A 横截面对形心轴z的静矩S 横截面对主惯性轴z的惯性矩I 得到四个3 3子块所组成的局部坐标系下的平面刚架梁单元的单元刚度矩阵。第三章第三章 杆系结构静力分析的有限单元法杆系结构静力分析的有限单元法第37页/共193页39 平面桁架的单元刚度矩阵为 空间桁架单元每个结点有3个位移分量,其单元结点位移列向量 空间桁架局部坐标下的单元刚度矩阵是66的 第三章第三章 杆系结构静力分析的有限单元法杆系结构静力分析的有限单元法第38页/
23、共193页40 空间刚架单元每个结点有6个位移分量,其单元结点位移列向量 空间刚架局部坐标下的单元刚度矩阵是1212的。(a)杆单元i端产生单位位移 (b)杆单元j端产生单位位移图3-6 平面桁架单元刚度系数的物理意义(a)梁单元i端产生单位位移 (b)梁单元j端产生单位位移 第三章第三章 杆系结构静力分析的有限单元法杆系结构静力分析的有限单元法第39页/共193页41(c)梁单元i端产生单位角位移 (d)梁单元j端产生单位角位移图3-7 平面刚架单元刚度系数的物理意义 单元的刚度矩阵的性质单元的刚度矩阵的性质 a.单元刚度矩阵仅与单元的几何特征和材料性质有关。仅与单元的横截面积A、惯性矩I、
24、单元长度l、单元的弹性模量E有关。b.单元刚度矩阵是一个对称阵。在单元刚度矩阵对角线两侧对称位置上的两个元素数值相等,即,根据是反力互等定理。c.单元刚度矩阵是一个奇异阵。d.单元刚度矩阵可以分块矩阵的形式表示。具有确定的物理意义。第三章第三章 杆系结构静力分析的有限单元法杆系结构静力分析的有限单元法第40页/共193页423.3 坐标变换及单元刚度矩阵坐标变换及单元刚度矩阵 坐标变换坐标变换 在整体坐标系中单元结点力向量和结点位移列向量 可分别表示成 (a)向量转换分析 (b)向量转换图3-8 向量转换示意图 第三章第三章 杆系结构静力分析的有限单元法杆系结构静力分析的有限单元法第41页/共
25、193页43对于梁单元如图3-8(b)所示,则有 可简写为 第三章第三章 杆系结构静力分析的有限单元法杆系结构静力分析的有限单元法第42页/共193页44 同理 式中 平面刚架梁单元的从局部坐标系向整体坐标系的转换矩阵。整体坐标系下的单元刚度矩阵整体坐标系下的单元刚度矩阵 式中 整体坐标下的单元刚度矩阵。和 一样,为对称阵、奇异阵。第三章第三章 杆系结构静力分析的有限单元法杆系结构静力分析的有限单元法第43页/共193页453.4 整体刚度矩阵整体刚度矩阵 整体刚度矩阵的建立整体刚度矩阵的建立 整体刚度矩阵也称之为结构刚度矩阵或总体刚度 矩阵,简称总刚。整体刚度矩阵的求解是建立在结构 平衡条件
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 工程 科技 有限元分析 基础
限制150内