《2020年浙江省台州市中考数学试题(解析版).pdf》由会员分享,可在线阅读,更多相关《2020年浙江省台州市中考数学试题(解析版).pdf(20页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2020 年台州市中考数学试卷 一、选择题 1.计算1 3的结果是()A.2 B.2 C.4 D.4【答案】B【解析】【分析】根据减法法则计算即可.【详解】1-3=1+(-3)=-2.故选 B.【点睛】本题考查了有理数的减法运算,熟练掌握减去一个数等于加上这个数的相反数是解答本题的关键.2.用三个相同的正方体搭成如图所示的立体图形,则该立体图形的主视图是()A.B.C.D.【答案】A【解析】【分析】根据三视图的相关知识直接找出主视图即可【详解】主视图即从图中箭头方向看,得出答案为 A,故答案选:A【点睛】此题考查立体图形的三视图,理解定义是关键 3.计算 2a23a4的结果是()A.5a6 B
2、.5a8 C.6a6 D.6a8【答案】C【解析】【分析】直接利用单项式乘单项式运算法则计算得出答案【详解】解:2a23a4=6a6 故选:C【点睛】本题考查了单项式与单项式的乘法,其运算法则为:数字与数字相乘,字母为同底数幂相乘,底数不变,指数相加,掌握运算法则是解题关键 4.无理数10在()A.2和 3 之间 B.3和 4 之间 C.4和 5 之间 D.5和 6 之间【答案】B【解析】【分析】根据被开方数的范围,确定出所求即可【详解】91016,3104,则10在整数 3 与 4之间 故选:B【点睛】此题考查了估算无理数的大小,解题的关键是熟知无理数估算的方法 5.在一次数学测试中,小明成
3、绩 72分,超过班级半数同学的成绩,分折得出这个结论所用的统计量是()A.中位数 B.众数 C.平均数 D.方差【答案】A【解析】【分析】根据中位数的定义即可判断【详解】小明成绩 72 分,超过班级半数同学的成绩,由此可得所用的统计量是中位数;故选 A【点睛】此题主要考查中位数的意义,解题的关键是熟知中位数的定义 6.如图,把 ABC先向右平移 3 个单位,再向上平移 2个单位得到 DEF,则顶点 C(0,-1)对应点的坐标为()A.(0,0)B.(1,2)C.(1,3)D.(3,1)【答案】D【解析】【分析】先找到顶点 C 的对应点为 F,再根据直角坐标系的特点即可得到坐标【详解】顶点 C
4、的对应点为 F,由图可得 F的坐标为(3,1),故选 D【点睛】此题主要考查坐标与图形,解题的关键是熟知直角坐标系的特点 7.如图,已知线段 AB,分别以 A,B 为圆心,大于12AB同样长为半径画弧,两弧交于点 C,D,连接 AC,AD,BC,BD,CD,则下列说法错误的是()A.AB 平分CAD B.CD平分ACB C.ABCD D.AB=CD【答案】D【解析】【分析】根据作图判断出四边形 ACBD 是菱形,再根据菱形的性质:菱形的对角线平分一组对角、菱形的对角线互相垂直平分可得出答案【详解】解:由作图知 AC=AD=BC=BD,四边形 ACBD是菱形,AB平分CAD、CD平分ACB、AB
5、CD,不能判断 AB=CD,故选:D【点睛】本题主要考查线段垂直平分线的尺规作图、菱形的判定方法等,解题的关键是掌握菱形的判定与性质 8.下是关于某个四边形的三个结论:它的对角线相等;它是一个正方形;它是一个矩形下列推理过程正确的是()A.由推出,由推出 B.由推出,由推出 C.由推出,由推出 D.由推出,由推出【答案】A【解析】【分析】根据正方形和矩形的性质定理解题即可【详解】根据正方形特点由可以推理出,再由矩形的性质根据推出,故选 A【点睛】此题考查正方形和矩形的性质定理,难度一般 9.如图 1,小球从左侧的斜坡滚下,到达底端后又沿着右侧斜坡向上滚,在这个过程中,小球的运动速度 v(单位:
6、m/s)与运动时间 t(单位:s)的函数图象如图 2,则该小球的运动路程 y(单位:m)与运动时间 t(单位:s)之间的函数图象大致是()A.B.C.D.【答案】C【解析】【分析】由图 2 知小球速度先是逐渐增大,后来逐渐减小,则随着时间增加,小球刚开始路程增加较快,后来增加较慢,由此得出正处答案【详解】由图 2 知小球速度不断变化,因此判定小球运动速度 v 与运动时间 t 之间的函数关系是11 1122 22000vk tkvk tb kb,(1t为前半程时间,2t为后半程时间),前半程路程函数表达式为:211 1yk t,后半程路程为2222222 vk ttbty,2100,kk,即前半
7、段图像开口向上,后半段开口向下 C 项图像满足此关系式,故答案为:C【点睛】此题考查根据函数式判断函数图像的大致位置 10.把一张宽为 1cm的长方形纸片 ABCD 折叠成如图所示的阴影图案,顶点 A,D 互相重合,中间空白部分是以 E为直角顶点,腰长为 2cm 的等腰直角三角形,则纸片的长 AD(单位:cm)为()A.73 2 B.74 2 C.83 2 D.84 2【答案】D【解析】【分析】如图,过点 M作 MHAR于 H,过点 N作 NJAW 于 J想办法求出 AR,RM,MN,NW,WD即可解决问题【详解】解:如图,过点 M 作 MHAR 于 H,过点 N 作 NJAW 于 J 由题意
8、EMN 是等腰直角三角形,EM=EN=2,MN=2 2 四边形 EMHK是矩形,EK=AK=MH=1,KH=EM=2,RMH是等腰直角三角形,RH=MH=1,RM=2,同法可证 NW=2,题意 AR=R A=AW=WD=4,AD=AR+RM+MN+NW+DW=4+2+2 2+2+4=84 2.故答案为:D.【点睛】本题考查翻折变换,等腰直角三角形的判定和性质,矩形的性质等知识,解题的关键是学会添加常用辅助线,构造特殊三角形或特殊四边形解决问题 二、填空题 11.因式分解:x29=_【答案】(x+3)(x3)【解析】【分析】原式利用平方差公式分解即可【详解】解:原式=(x+3)(x3),故答案为
9、:(x+3)(x3)【点睛】本题考查因式分解,熟练掌握平方差公式是解题关键 12.计算113xx的结果是_【答案】23x【解析】【分析】先通分,再相加即可求得结果【详解】解:1131333xxxx 23x,故答案为:23x【点睛】此题考察分式的加法,先通分化为同分母分式再相加即可 13.如图,等边三角形纸片 ABC 的边长为 6,E,F是边 BC上的三等分点分别过点 E,F沿着平行于 BA,CA 方向各剪一刀,则剪下的DEF的周长是_ 【答案】6【解析】【分析】先说明 DEF是等边三角形,再根据 E,F是边 BC上的三等分求出 BC 的长,最后求周长即可.【详解】解:等边三角形纸片 ABC B
10、=C=60 DEAB,DFAC DEF=DFE=60 DEF是等边三角形 DE=EF=DF E,F是边 BC上的三等分点,BC=6 EF=2 DE=EF=DF=2 DEF=DE+EF+DF=6 故答案为 6【点睛】本题考查了等边三角形的判定和性质、三等分点的意义,灵活应用等边三角形的性质是正确解答本题的关键 14.甲、乙两位同学在 10次定点投篮训练中(每次训练投 8个),各次训练成绩(投中个数)的折线统计图如图所示,他们成绩的方差分别为 s甲2与 S乙2,则 s甲2_S乙2(填“”、“=”、“中的一个)【答案】【解析】【分析】利用折线统计图可判断乙同学的成绩波动较大,然后根据方差的意义可得到
11、甲、乙的方差的大小【详解】解:由折线统计图得乙同学的成绩波动较大,s甲2S乙2 故答案为:【分析】本题考查了方差的意义,掌握知识点是解题关键 15.如图,在 ABC 中,D是边 BC 上的一点,以 AD为直径的O交 AC于点 E,连接 DE若O与 BC相切,ADE=55,则C的度数为_ 【答案】55【解析】【分析】根据 AD是直径可得AED=90,再根据 BC是O的切线可得ADC=90,再根据直角的定义及角度等量替换关系即可得到C=ADE=55【详解】AD是直径,AED=90,ADE+DAE=90 BC是O的切线,ADC=90,C+DAE=90 C=ADE=55 故答案为:55【点睛】此题主要
12、考查圆内的角度求解,解题的关键是熟知切线的性质 16.用四块大正方形地砖和一块小正方形地砖拼成如图所示的实线图案,每块大正方形地砖面积为 a,小正方形地砖面积为依次连接四块大正方形地砖的中心得到正方形 ABCD则正方形 ABCD 的面积为_(用含 a,b的代数式表示)【答案】a b【解析】【分析】如图,连接 AE、AF,先证明GAEHAF,由此可证得AEFGAHESS四边形,进而同理可得,根据正方形ABCD 的面积等于四个相同四边形的面积之和及小正方形的面积即可求得答案【详解】解:如图,连接 AE、AF,点 A为大正方形的中心,AE=AF,EAF=90,AEF=AFE=45,GEF=90,AE
13、G=GEF-AEF=45,AEG=AFE,四边形 ABCD为正方形,DAB=EAF=90,GAE=HAF,在 GAE与 HAF 中,GAEHAFAEAFAEGAFH GAEHAF(ASA),GAEHAFSS,GAEAEHHAFAEHSSSS,即AEFGAHESS四边形,11=44AEFSSa大正方形,11=44GAHESSa四边形大正方形,同理可得:1=44ABCDSab正方形,即=ABCDSab正方形,故答案为:a b 【点睛】本题考查了正方形的性质及全等三角形的判定及性质,熟练掌握正方形的性质并能作出正确的辅助线是解决本题的关键 三、解答题 17.计算:382 【答案】32【解析】【分析】
14、按照绝对值的概念、平方根的概念逐个求解,然后再用二次根式加减运算即可.【详解】解:原式=3+2 2232.故答案为:32.【点睛】本题考查了绝对值的概念、平方根的概念、二次根式的加减运算等,熟练掌握运算公式及法则是解决此类题的关键.18.解方程组:1,37xyxy 【答案】2,1.xy 【解析】试题分析:首先将两式相加得出关于 x的一元一次方程,求出 x 的值,然后将 x的值代入第一个方程求出 y的值,从而得出方程组的解.试题解析:1,37.xyxy+得:4=8x,所以=2x.把=2x代入得:y=1.所以,该方程组的解为2,1.xy 19.人字折叠梯完全打开后如图 1 所示,B,C是折叠梯的两
15、个着地点,D是折叠梯最高级踏板的固定点图2 是它的示意图,AB=AC,BD=140cm,BAC=40,求点 D离地面的高度 DE(结果精确到 0.1cm;参考数据 sin700.94,cos700.34,sin200.34,cos200.94)【答案】131.6cm【解析】【分析】过点 A作 AFBC 于点 F,根据等腰三角形的三线合一性质得BAF的度数,进而得BDE 的度数,再解直角三角形得结果【详解】解:过点 A作 AFBC 于点 F,则 AFDE,BDE=BAF,AB=AC,BAC=40,BDE=BAF=20,DE=BDcos201400.94=131.6(cm)故点 D离地面的高度 D
16、E约为 131.6cm【点睛】本题主要考查了解直角三角形,等腰三角形的性质,关键是构造直角三角形求得BDE 的度数 20.小明同学训练某种运算技能,每次训练完成相同数量的题目,各次训练题目难度相当当训练次数不超过 15 次时,完成一次训练所需要的时间 y(单位:秒)与训练次数 x(单位:次)之间满足如图所示的反比例函数关系完成第 3次训练所需时间为 400秒(1)求 y与 x 之间的函数关系式;(2)当 x 的值为 6,8,10时,对应的函数值分别为 y1,y2,y3,比较(y1-y2)与(y2-y3)的大小:y1-y2 y2-y3 【答案】(1)1200(0)yxx;(2)【解析】【分析】(
17、1)设反比例函数解析式为kyx,将点(3,400)代入求出k即可,最后注意自变量的取值范围.(2)分别将 x的值为 6,8,10 时,对应的函数值分别为 y1,y2,y3的值求出,然后再比较大小求解.【详解】解:(1)设反比例函数解析式为(0)kykx 将点(3,400)代入,即得3 4001200 k 故反比例函数的解析式为:1200(0)yxx.故答案为:1200(0)yxx.(2)当 x=6时,代入反比例函数中,解得11200006=2y,当 x=8时,代入反比例函数中,解得21200508=1y,当 x=10时,代入反比例函数中,解得312002010=1y,1220015050yy
18、2315012030yy 1223yyyy.故答案为:.【点睛】本题考查了反比例函数的解析式求法、反比例函数的图像性质等,点在反比例函数上,则将点的坐标代入解析式中,得到等式进而求解.21.如图,已知 AB=AC,AD=AE,BD 和 CE相交于点 O(1)求证:ABDACE;(2)判断BOC的形状,并说明理由 【答案】(1)见解析;(2)等腰三角形,理由见解析【解析】【分析】(1)由“SAS”可证ABDACE;(2)由全等三角形的性质可得ABD=ACE,由等腰三角形的性质可得ABC=ACB,可求OBC=OCB,可得 BO=CO,即可得结论【详解】证明:(1)AB=AC,BAD=CAE,AD=
19、AE,ABDACE(SAS);(2)BOC是等腰三角形,理由如下:ABDACE,ABD=ACE,AB=AC,ABC=ACB,ABCABD=ACBACE,OBC=OCB,BO=CO,BOC是等腰三角形【点睛】本题考查了全等三角形的判定与性质,等腰三角形的判定,熟记相关定理是解题关键 22.新冠疫情期间,某校开展线上教学,有“录播”和“直播”两种教学方式供学生选择其中一种为分析该校学生线上学习情况,在接受这两种教学方式的学生中各随机抽取 40人调查学习参与度,数据整理结果如表(数据分组包含左端值不包含右端值)参与度 人数 方式 0.20.4 0.40.6 0.60.8 0.81 录播 4 16 1
20、2 8 直播 2 10 16 12 (1)你认为哪种教学方式学生的参与度更高?简要说明理由(2)从教学方式为“直播”的学生中任意抽取一位学生,估计该学生的参与度在 0.8 及以上的概率是多少?(3)该校共有 800 名学生,选择“录播”和“直播”的人数之比为 1:3,估计参与度在 0.4 以下的共有多少人?【答案】(1)“直播”教学方式学生的参与度更高,理由见解析;(2)30%;(3)50人【解析】【分析】(1)根据表格数据得出两种教学方式参与度在 0.6以上的人数,比较即可作出判断;(2)用表格中“直播”教学方式学生参与度在 0.8以上的人数除以被调查的总人数即可估计对应概率;(3)先根据“
21、录播”和“直播”的人数之比为 1:3及该校学生总人数求出“直播”、“录播”人数,再分别乘以两种教学方式中参与度在 0.4 以下人数所占比例求出对应人数,再相加即可得出答案【详解】解:(1)“直播”教学方式学生参与度更高:理由:“直播”参与度在 0.6 以上的人数为 28 人,“录播”参与度在 0.6 以上的人数为 20人,参与度在 0.6以上的“直播”人数远多于“录播”人数,“直播”教学方式学生的参与度更高;(2)1240=0.3=30%,答:估计该学生的参与度在 0.8 及以上的概率是 30%;(3)“录播”总学生数为 80011 3=200(人),“直播”总学生数为 80031 3=600
22、(人),“录播”参与度在 0.4以下的学生数为 200440=20(人),“直播”参与度在 0.4以下的学生数为 600240=30(人),参与度在 0.4 以下的学生共有 20+30=50(人)【点睛】本题考查了概率的计算,弄清题意,正确分析,确定计算方法是解题关键 23.如图,在ABC 中,ACB=90,将ABC 沿直线 AB翻折得到ABD,连接 CD交 AB于点 ME是线段 CM 上的点,连接 BEF是BDE的外接圆与 AD的另一个交点,连接 EF,BF,(1)求证:BEF是直角三角形;(2)求证:BEFBCA;(3)当 AB=6,BC=m时,在线段 CM正存在点 E,使得 EF和 AB
23、互相平分,求 m的值 【答案】(1)见解析;(2)见解析;(3)2 3【解析】【分析】(1)想办法证明BEF=90即可解决问题(也可以利用圆内接四边形的性质直接证明)(2)根据两角对应相等两三角形相似证明(3)证明四边形 AFBE是平行四边形,推出 FJ=12BD=12m,EF=m,由ABCCBM,可得 BM=26m,由BEFBCA,推出ACBCEFBE,由此构建方程求解即可.【详解】(1)证明:由折叠可知,ADB=ACB=90 EFB=EDB,EBF=EDF,EFB+EBF=EDB+EDF=ADB=90,BEF=90,BEF是直角三角形(2)证明:BC=BD,BDC=BCD,EFB=EDB,
24、EFB=BCD,AC=AD,BC=BD,ABCD,AMC=90,BCD+ACD=ACD+CAB=90,BCD=CAB,BFE=CAB,ACB=FEB=90,BEFBCA(3)设 EF交 AB于 J连接 AE,如下图所示:EF与 AB互相平分,四边形 AFBE 是平行四边形,EFA=FEB=90,即 EFAD,BDAD,EFBD,AJ=JB,AF=DF,FJ=1=22mBD EF=m ABCCBM BC:MB=AB:BC BM=26m,BEJBME,BE:BM=BJ:BE BE=2m,BEFBCA,=ACBCEFBE 即236=2mmmm 解得2 3m(负根舍去).故答案为:2 3.【点睛】本题
25、属于圆综合题,考查了圆周角定理,相似三角形的判定和性质平行四边形的判定和性质等知识,解题的关键是学会利用参数构建方程解决问题,属于中考压轴题 24.用各种盛水容器可以制作精致的家用流水景观(如图 1)科学原理:如图 2,始终盛满水的圆体水桶水面离地面的高度为 H(单位:m),如果在离水面竖直距离为 h(单校:cm)的地方开大小合适的小孔,那么从小孔射出水的射程(水流落地点离小孔的水平距离)s(单位:cm)与 h 的关系为 s2=4h(Hh)应用思考:现用高度为 20cm的圆柱体望料水瓶做相关研究,水瓶直立地面,通过连注水保证它始终盛满水,在离水面竖直距高 h cm处开一个小孔 (1)写出 s2
26、与 h 的关系式;并求出当 h为何值时,射程 s 有最大值,最大射程是多少?(2)在侧面开两个小孔,这两个小孔离水面的竖直距离分别为 a,b,要使两孔射出水的射程相同,求 a,b之间的关系式;(3)如果想通过垫高塑料水瓶,使射出水的最大射程增加 16cm,求整高的高度及小孔离水面的竖直距离 【答案】(1)224(10)400sh,当10h 时,max20s;(2)ab或20ab;(3)垫高的高度为 16cm,小孔离水面的竖直距离为 18cm【解析】【分析】(1)将 s2=4h(20-h)写成顶点式,按照二次函数的性质得出 s2的最大值,再求 s2的算术平方根即可;(2)设存在 a,b,使两孔射
27、出水的射程相同,则 4a(20-a)=4b(20-b),利用因式分解变形即可得出答案;(3)设垫高的高度为 m,写出此时 s2关于 h 的函数关系式,根据二次函数的性质可得答案【详解】解:(1)s2=4h(H-h),当 H=20 时,s2=4h(20-h)=-4(h-10)2+400,当 h=10 时,s2有最大值 400,当 h=10 时,s有最大值 20cm 当 h 为何值时,射程 s有最大值,最大射程是 20cm;故答案为:最大射程是 20cm.(2)s2=4h(20-h),设存在 a,b,使两孔射出水的射程相同,则有:4a(20-a)=4b(20-b),20a-a2=20b-b2,a2-b2=20a-20b,(a+b)(a-b)=20(a-b),(a-b)(a+b-20)=0,a-b=0或 a+b-20=0,a=b或 a+b=20.故答案为:a=b或 a+b=20.(3)设垫高的高度为 m,则222204(20)4()(20)2 mshmhhm 当202mh时,max20=2016sm 16m时,此时20182mh 垫高的高度为 16cm,小孔离水面的竖直距离为 18cm 故答案为:垫高的高度为 16cm,小孔离水面的竖直距离为 18cm.【点睛】本题考查了二次函数在实际问题中的应用,厘清题中的数量关系并明确二次函数的性质是解题的关键
限制150内