公开课教案教学设计课件数学归纳法.doc
《公开课教案教学设计课件数学归纳法.doc》由会员分享,可在线阅读,更多相关《公开课教案教学设计课件数学归纳法.doc(12页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2. 3数学归纳法 课前预习学案一、预习目标: 理解数学归纳法原理及其本质,掌握它的基本步骤与方法能较好地理解“归纳奠基”和“归纳递推”两者缺一不可。二、预习内容:提出问题:问题1:前面学习归纳推理时,我们有一个问题没有彻底解决即对于数列,已知 ,( n=1,2,3),通过对n=1,2,3,4前4项的归纳,猜想出其通项公式,但却没有进一步的检验和证明问题2:大家玩过多米诺骨牌游戏吗?这个游戏有怎样的规划?(多媒体演示多米诺骨牌游戏)这是一个码放骨牌游戏,码放时保证任意两相邻的两块骨牌,若前一块骨牌倒下,则一定导致后一块骨牌倒下只要推倒第一块骨牌,就必然导致第二块骨牌倒下;而第二块骨牌倒下,就必
2、然导致第三块骨牌倒下最后,不论有多少块骨牌都能全部倒下讨论问题:问题1、问题2有什么共同的特征?其结论成立的条件的共同特征是什么结论成立的条件:结论对第一个值成立;结论对前一个值成立,则对紧接着的下一个值也成立上面两个条件分别起怎样的作用?它们之间有怎样的关系?我们能否去掉其中的一个?你能举反例说明吗?在上述两个条件中,第一个条件是归纳递推的前提和基础,没有它,后面的递推将无从谈起;第二个步骤是核心和关键,是实现无限问题向有限问题转化的桥梁与纽带如在前面的问题1中,如果不是1,而是2,那么就不可能得出,因此第一步看似简单,但却是不可缺少的而第二步显然更加不可缺少这一点在多米诺骨牌游戏中也可清楚
3、地看出解决问题:由上,证明一个与自然数n有关的命题,可按下列步骤进行:(1)证明当n取第一个值()时命题成立;(2)假设n=k(k,)时命题成立,证明当n=k+1时命题也成立由以上两个步骤,可以断定命题对从开始的所有正整数n都成立这种证明方法叫做数学归纳法,它是证明与正整数n(n取无限多个值)有关、具有内在递推关系的数学命题的重要工具 三、提出疑惑同学们,通过你的自主学习,你还有哪些疑惑,请把它填在下面的表格中疑惑点疑惑内容 课内探究学案一、 学习目标(1)了解由有限多个特殊事例得出的一般结论不一定正确。(2)初步理解数学归纳法原理。(3)理解和记住用数学归纳法证明数学命题的两个步骤。(4)初
4、步会用数学归纳法证明一些简单的与正整数有关的恒等式。二、学习过程:例1、证明等差数列通项公式:解析:(1)让学生理解数学归纳法的严密性和合理性;(2)掌握从到时等式左边的变化情况。证明:(1) 当n1时等式成立; (2) 假设当nk时等式成立, 即, 则=, 即nk1时等式也成立由 (1)、(2)可知, 等差数列的通项公式对任何n都成立点评:利用数学归纳法证明和正整数相关的命题时,要注意以下三句话:递推基础不可少,归纳假设要用到,结论写明莫忘掉。变式训练1 .在数列中, 1, (n), 先计算,的值,再推测通项的公式, 最后证明你的结论例2、 用数学归纳法证明() 解析:(1)进一步让学生理解
5、数学归纳法的严密性和合理性,从而从感性认识上升为理性认识;(2)掌握从到时等式左边的变化情况,合理的进行添项、拆项合并项等。证明:(1)时:左边,右边,左边=右边,等式成立。当时等式也成立。 由 (1)、(2)可知,对一切,原等式均成立点评:利用数学归纳法证明和正整数相关的命题时,要注意以下三句话:递推基础不可少,归纳假设要用到,结论写明莫忘掉。变式训练2:用数学归纳法证明:135(2n1)反思总结:1归纳法是一种由特殊到一般的推理方法,分完全归纳法和不完全归纳法两种,而不完全归纳法得出的结论不具有可靠性,必须用数学归纳法进行严格证明;2数学归纳法作为一种证明方法,用于证明一些与正整数有关数学
6、命题,它的基本思想是递推思想,它的证明过程必须是两步,最后还有结论,缺一不可;3递推归纳时从到,必须用到归纳假设,并进行适当的恒等变换。注意明等式时第一步中时左右两边的形式,第二步中时应增加的式子;第二步中证明命题成立是全局的主体,主要注意两个“凑”:一是“凑”时的形式(这样才好利用归纳假设),二是“凑”目标式。当堂检测:1观察式子:,则可归纳出式子为()答案:2用数学归纳法证明:首项是,公比是q的等比数列的通项公式是,前n项和公式是课后练习与提高一、选择题1用数学归纳法证明过程中,由n=k递推到n=k+1时,不等式左边增加的项为 ( ) A. B. C. D. 2凸n边形有f(n)条对角线,
7、凸n+1边形对角线的条数f(n+1)为 ( )A. f(n)+n+1 B. f(n)+n C. f(n)+n-1 D. f(n)+n-23用数学归纳法证明不等式 的过程中,由n=k递推到n=k+1时,不等式左边 ( ) A.增加了一项 B.增加了一项C.增加了“”,又减少了“”D.增加了“ ”,又减少了“”二、填空题4已知数列,计算得,由此可猜测_5若f(k)=则= + _三、解答题6由下列不等式:,你能得到一个怎样的一般不等式?并加以证明参考答案:1. C 2. C 3. C 4. 5.6解:根据给出的几个不等式可以猜想第个不等式,即一般不等式为:用数学归纳法证明如下:(1)当时,猜想成立;
8、(2)假设当时,猜想成立,即,则当时,即当时,猜想也正确,所以对任意的,不等式成立 下课啦,咱们来听个小故事吧:活动目的:教育学生懂得“水”这一宝贵资源对于我们来说是极为珍贵的,每个人都要保护它,做到节约每一滴水,造福子孙万代。活动过程:1.主持人上场,神秘地说:“我让大家猜个谜语,你们愿意吗?”大家回答:“愿意!”主持人口述谜语:“双手抓不起,一刀劈不开,煮饭和洗衣,都要请它来。”主持人问:“谁知道这是什么?”生答:“水!”一生戴上水的头饰上场说:“我就是同学们猜到的水。听大家说,我的用处可大了,是真的吗?”主持人:我宣布:“水”是万物之源主题班会现在开始。 水说:“同学们,你们知道我有多重
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 公开 教案 教学 设计 课件 数学 归纳法
限制150内