2015年全国统一高考数学试卷(理科)(新课标ⅰ)(含解析版).docx
《2015年全国统一高考数学试卷(理科)(新课标ⅰ)(含解析版).docx》由会员分享,可在线阅读,更多相关《2015年全国统一高考数学试卷(理科)(新课标ⅰ)(含解析版).docx(34页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2015年全国统一高考数学试卷(理科)(新课标)一、选择题(共12小题,每小题5分,满分60分)1(5分)设复数z满足=i,则|z|=()A1BCD22(5分)sin20cos10cos160sin10=()ABCD3(5分)设命题p:nN,n22n,则p为()AnN,n22n BnN,n22n CnN,n22n DnN,n2=2n4(5分)投篮测试中,每人投3次,至少投中2次才能通过测试已知某同学每次投篮投中的概率为0.6,且各次投篮是否投中相互独立,则该同学通过测试的概率为()A0.648B0.432C0.36D0.3125(5分)已知M(x0,y0)是双曲线C:=1上的一点,F1,F2是
2、C的左、右两个焦点,若0,则y0的取值范围是()ABCD6(5分)九章算术是我国古代内容极为丰富的数学名著,书中有如下问题:”今有委米依垣内角,下周八尺,高五尺问:积及为米几何?“其意思为:”在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?“已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米约有()A14斛B22斛C36斛D66斛7(5分)设D为ABC所在平面内一点,则()ABCD8(5分)函数f(x)=cos(x+)的部分图象如图所示,则f(x)的单调递减区间为() A(k,k+),kzB(2k,2k+
3、),kzC(k,k+),kzD(,2k+),kz9(5分)执行如图所示的程序框图,如果输入的t=0.01,则输出的n=()A5B6C7D810(5分)(x2+x+y)5的展开式中,x5y2的系数为()A10B20C30D6011(5分)圆柱被一个平面截去一部分后与半球(半径为r)组成一个几何体,该几何体三视图中的正视图和俯视图如图所示若该几何体的表面积为16+20,则r=()A1B2C4D812(5分)设函数f(x)=ex(2x1)ax+a,其中a1,若存在唯一的整数x0使得f(x0)0,则a的取值范围是()A)B)C)D)二、填空题(本大题共有4小题,每小题5分)13(5分)若函数f(x)=
4、xln(x+)为偶函数,则a= 14(5分)一个圆经过椭圆=1的三个顶点且圆心在x轴的正半轴上则该圆标准方程为 15(5分)若x,y满足约束条件则的最大值为 16(5分)在平面四边形ABCD中,A=B=C=75BC=2,则AB的取值范围是 三、解答题:17(12分)Sn为数列an的前n项和,已知an0,an2+2an=4Sn+3(I)求an的通项公式:()设bn=,求数列bn的前n项和18(12分)如图,四边形ABCD为菱形,ABC=120,E,F是平面ABCD同一侧的两点,BE丄平面ABCD,DF丄平面 ABCD,BE=2DF,AE丄EC()证明:平面AEC丄平面AFC()求直线AE与直线C
5、F所成角的余弦值19(12分)某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x(单位:千元)对年销售量y(单位:t)和年利润z(单位:千元)的影响,对近8年的年宣传费xi和年销售量yi(i=1,2,8)数据作了初步处理,得到下面的散点图及一些统计量的值(xi)2(wi)2(xi)(yi)(wi)(yi)46.65636.8289.81.61469108.8表中wi=i,=()根据散点图判断,y=a+bx与y=c+d哪一个适宜作为年销售量y关于年宣传费x的回归方程类型?(给出判断即可,不必说明理由)()根据()的判断结果及表中数据,建立y关于x的回归方程;()已知这种产品的年利润z与x
6、、y的关系为z=0.2yx根据()的结果回答下列问题:(i)年宣传费x=49时,年销售量及年利润的预报值是多少?(ii)年宣传费x为何值时,年利润的预报值最大?附:对于一组数据(u1 v1),(u2 v2).(un vn),其回归线v=+u的斜率和截距的最小二乘估计分别为:=,=20(12分)在直角坐标系xOy中,曲线C:y=与直线l:y=kx+a(a0)交于M,N两点()当k=0时,分別求C在点M和N处的切线方程()y轴上是否存在点P,使得当k变动时,总有OPM=OPN?(说明理由)21(12分)已知函数f(x)=x3+ax+,g(x)=lnx(i)当a为何值时,x轴为曲线y=f(x)的切线
7、;(ii)用minm,n表示m,n中的最小值,设函数h(x)=minf(x),g(x)(x0),讨论h(x)零点的个数选修4一1:几何证明选讲22(10分)如图,AB是O的直径,AC是O的切线,BC交O于点E()若D为AC的中点,证明:DE是O的切线;()若OA=CE,求ACB的大小选修4一4:坐标系与参数方程23(10分)在直角坐标系xOy中,直线C1:x=2,圆C2:(x1)2+(y2)2=1,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系()求C1,C2的极坐标方程;()若直线C3的极坐标方程为=(R),设C2与C3的交点为M,N,求C2MN的面积选修4一5:不等式选讲24(10分)已
8、知函数f(x)=|x+1|2|xa|,a0()当a=1时,求不等式f(x)1的解集;()若f(x)的图象与x轴围成的三角形面积大于6,求a的取值范围2015年全国统一高考数学试卷(理科)(新课标)参考答案与试题解析一、选择题(共12小题,每小题5分,满分60分)1(5分)设复数z满足=i,则|z|=()A1BCD2【考点】A8:复数的模菁优网版权所有【专题】11:计算题;5N:数系的扩充和复数【分析】先化简复数,再求模即可【解答】解:复数z满足=i,1+z=izi,z(1+i)=i1,z=i,|z|=1,故选:A【点评】本题考查复数的运算,考查学生的计算能力,比较基础2(5分)sin20cos
9、10cos160sin10=()ABCD【考点】GP:两角和与差的三角函数菁优网版权所有【专题】56:三角函数的求值【分析】直接利用诱导公式以及两角和的正弦函数,化简求解即可【解答】解:sin20cos10cos160sin10=sin20cos10+cos20sin10=sin30=故选:D【点评】本题考查诱导公式以及两角和的正弦函数的应用,基本知识的考查3(5分)设命题p:nN,n22n,则p为()AnN,n22nBnN,n22nCnN,n22nDnN,n2=2n【考点】2J:命题的否定菁优网版权所有【专题】5L:简易逻辑【分析】根据特称命题的否定是全称命题即可得到结论【解答】解:命题的否
10、定是:nN,n22n,故选:C【点评】本题主要考查含有量词的命题的否定,比较基础4(5分)投篮测试中,每人投3次,至少投中2次才能通过测试已知某同学每次投篮投中的概率为0.6,且各次投篮是否投中相互独立,则该同学通过测试的概率为()A0.648B0.432C0.36D0.312【考点】C8:相互独立事件和相互独立事件的概率乘法公式菁优网版权所有【专题】5I:概率与统计【分析】判断该同学投篮投中是独立重复试验,然后求解概率即可【解答】解:由题意可知:同学3次测试满足XB(3,0.6),该同学通过测试的概率为=0.648故选:A【点评】本题考查独立重复试验概率的求法,基本知识的考查5(5分)已知M
11、(x0,y0)是双曲线C:=1上的一点,F1,F2是C的左、右两个焦点,若0,则y0的取值范围是()ABCD【考点】KC:双曲线的性质菁优网版权所有【专题】11:计算题;5D:圆锥曲线的定义、性质与方程【分析】利用向量的数量积公式,结合双曲线方程,即可确定y0的取值范围【解答】解:由题意,=(x0,y0)(x0,y0)=x023+y02=3y0210,所以y0故选:A【点评】本题考查向量的数量积公式,考查双曲线方程,考查学生的计算能力,比较基础6(5分)九章算术是我国古代内容极为丰富的数学名著,书中有如下问题:”今有委米依垣内角,下周八尺,高五尺问:积及为米几何?“其意思为:”在屋内墙角处堆放
12、米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?“已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米约有()A14斛B22斛C36斛D66斛【考点】LF:棱柱、棱锥、棱台的体积菁优网版权所有【专题】5F:空间位置关系与距离【分析】根据圆锥的体积公式计算出对应的体积即可【解答】解:设圆锥的底面半径为r,则r=8,解得r=,故米堆的体积为()25,1斛米的体积约为1.62立方,1.6222,故选:B【点评】本题主要考查椎体的体积的计算,比较基础7(5分)设D为ABC所在平面内一点,则()ABCD【考点】96:平行向量(共线)
13、菁优网版权所有【专题】5A:平面向量及应用【分析】将向量利用向量的三角形法则首先表示为,然后结合已知表示为的形式【解答】解:由已知得到如图由=;故选:A【点评】本题考查了向量的三角形法则的运用;关键是想法将向量表示为8(5分)函数f(x)=cos(x+)的部分图象如图所示,则f(x)的单调递减区间为() A(k,k+),kzB(2k,2k+),kzC(k,k+),kzD(,2k+),kz【考点】HA:余弦函数的单调性菁优网版权所有【专题】57:三角函数的图像与性质【分析】由周期求出,由五点法作图求出,可得f(x)的解析式,再根据余弦函数的单调性,求得f(x)的减区间【解答】解:由函数f(x)=
14、cos(x+)的部分图象,可得函数的周期为=2()=2,=,f(x)=cos(x+)再根据函数的图象以及五点法作图,可得+=,kz,即=,f(x)=cos(x+)由2kx+2k+,求得 2kx2k+,故f(x)的单调递减区间为(,2k+),kz,故选:D【点评】本题主要考查由函数y=Asin(x+)的部分图象求解析式,由周期求出,由五点法作图求出的值;还考查了余弦函数的单调性,属于基础题9(5分)执行如图所示的程序框图,如果输入的t=0.01,则输出的n=()A5B6C7D8【考点】EF:程序框图菁优网版权所有【专题】5K:算法和程序框图【分析】由已知中的程序框图可知:该程序的功能是利用循环结
15、构计算并输出变量n的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案【解答】解:第一次执行循环体后,S=,m=,n=1,不满足退出循环的条件;再次执行循环体后,S=,m=,n=2,不满足退出循环的条件;再次执行循环体后,S=,m=,n=3,不满足退出循环的条件;再次执行循环体后,S=,m=,n=4,不满足退出循环的条件;再次执行循环体后,S=,m=,n=5,不满足退出循环的条件;再次执行循环体后,S=,m=,n=6,不满足退出循环的条件;再次执行循环体后,S=,m=,n=7,满足退出循环的条件;故输出的n值为7,故选:C【点评】本题考查的知识点是程序框图,当循环的次数不多,或有规
16、律时,常采用模拟循环的方法解答10(5分)(x2+x+y)5的展开式中,x5y2的系数为()A10B20C30D60【考点】DA:二项式定理菁优网版权所有【专题】11:计算题;5P:二项式定理【分析】利用展开式的通项,即可得出结论【解答】解:(x2+x+y)5的展开式的通项为Tr+1=,令r=2,则(x2+x)3的通项为=,令6k=5,则k=1,(x2+x+y)5的展开式中,x5y2的系数为=30故选:C【点评】本题考查二项式定理的运用,考查学生的计算能力,确定通项是关键11(5分)圆柱被一个平面截去一部分后与半球(半径为r)组成一个几何体,该几何体三视图中的正视图和俯视图如图所示若该几何体的
17、表面积为16+20,则r=()A1B2C4D8【考点】L!:由三视图求面积、体积菁优网版权所有【专题】5Q:立体几何【分析】通过三视图可知该几何体是一个半球拼接半个圆柱,计算即可【解答】解:由几何体三视图中的正视图和俯视图可知,截圆柱的平面过圆柱的轴线,该几何体是一个半球拼接半个圆柱,其表面积为:4r2+r22r2r+2r2r+r2=5r2+4r2,又该几何体的表面积为16+20,5r2+4r2=16+20,解得r=2,故选:B【点评】本题考查由三视图求表面积问题,考查空间想象能力,注意解题方法的积累,属于中档题12(5分)设函数f(x)=ex(2x1)ax+a,其中a1,若存在唯一的整数x0
18、使得f(x0)0,则a的取值范围是()A)B)C)D)【考点】51:函数的零点;6D:利用导数研究函数的极值菁优网版权所有【专题】2:创新题型;53:导数的综合应用【分析】设g(x)=ex(2x1),y=axa,问题转化为存在唯一的整数x0使得g(x0)在直线y=axa的下方,求导数可得函数的极值,数形结合可得ag(0)=1且g(1)=3e1aa,解关于a的不等式组可得【解答】解:设g(x)=ex(2x1),y=axa,由题意知存在唯一的整数x0使得g(x0)在直线y=axa的下方,g(x)=ex(2x1)+2ex=ex(2x+1),当x时,g(x)0,当x时,g(x)0,当x=时,g(x)取
19、最小值2,当x=0时,g(0)=1,当x=1时,g(1)=e0,直线y=axa恒过定点(1,0)且斜率为a,故ag(0)=1且g(1)=3e1aa,解得a1故选:D【点评】本题考查导数和极值,涉及数形结合和转化的思想,属中档题二、填空题(本大题共有4小题,每小题5分)13(5分)若函数f(x)=xln(x+)为偶函数,则a=1【考点】3K:函数奇偶性的性质与判断菁优网版权所有【专题】51:函数的性质及应用【分析】由题意可得,f(x)=f(x),代入根据对数的运算性质即可求解【解答】解:f(x)=xln(x+)为偶函数,f(x)=f(x),(x)ln(x+)=xln(x+),ln(x+)=ln(
20、x+),ln(x+)+ln(x+)=0,ln(+x)(x)=0,lna=0,a=1故答案为:1【点评】本题主要考查了偶函数的定义及对数的运算性质的简单应用,属于基础试题14(5分)一个圆经过椭圆=1的三个顶点且圆心在x轴的正半轴上则该圆标准方程为(x)2+y2=【考点】K3:椭圆的标准方程菁优网版权所有【专题】5D:圆锥曲线的定义、性质与方程【分析】利用椭圆的方程求出顶点坐标,然后求出圆心坐标,求出半径即可得到圆的方程【解答】解:一个圆经过椭圆=1的三个顶点且圆心在x轴的正半轴上可知椭圆的右顶点坐标(4,0),上下顶点坐标(0,2),设圆的圆心(a,0),则,解得a=,圆的半径为:,所求圆的方
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2015 全国 统一 高考 数学试卷 理科 新课 解析
限制150内