一元二次方程知识点及其应用.pdf
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_05.gif)
《一元二次方程知识点及其应用.pdf》由会员分享,可在线阅读,更多相关《一元二次方程知识点及其应用.pdf(11页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、一元二次方程知识点及其应用Last revision on 21 December 2020一、相关知识点一、相关知识点1理解并掌握一元二次方程的意义未知数个数为 1,未知数的最高次数为 2,整式方程,可化为一般形式;2正确识别一元二次方程中的各项及各项的系数(1)明确只有当二次项系数a 0时,整式方程ax2bx c 0才是一元二次方程。(2)各项的确定(包括各项的系数及各项的未知数).(3)熟练整理方程的过程3一元二次方程的解的定义与检验一元二次方程的解4列出实际问题的一元二次方程二解法1明确一元二次方程是以降次为目的,以配方法、开平方法、公式法、因式分解法等方法为手段,从而把一元二次方程转
2、化为一元一次方程求解;2根据方程系数的特点,熟练地选用配方法、开平方法、公式法、因式分解法等方法解一元二次方程;3体会不同解法的相互的联系;4值得注意的几个问题:(1)开平方法:对于形如x2 n或(ax b)2 n(a 0)的一元二次方程,即一元二次方程的一边是含有未知数的一次式的平方,而另一边是一个非负数,可用开平方法求解.形如x2 n的方程的解法:当n 0时,x n;当n 0时,x1 x2 0;当n 0时,方程无实数根。(2)配方法:通过配方的方法把一元二次方程转化为(x m)2 n的方程,再运用开平方法求解。配方法的一般步骤:移项:把一元二次方程中含有未知数的项移到方程的左边,常数项移到
3、方程的右边;“系数化 1”:根据等式的性质把二次项的系数化为 1;配方:将方程两边分别加上一次项系数一半的平方,把方程变形为(x m)2 n的形式;求解:若n 0时,方程的解为x m n,若n 0时,方程无实数解。bb24ac(3)公式法:一元二次方程ax bx c 0(a 0)的根x 2a2当b2 4ac 0时,方程有两个实数根,且这两个实数根不相等;当b2 4ac 0时,方程有两个实数根,且这两个实数根相等,写为x1 x2 当b2 4ac 0时,方程无实数根.公式法的一般步骤:把一元二次方程化为一般式;确定a,b,c的值;代入b2 4ac中计算其值,判断方程是否有实数根;若b2 4ac 0
4、代入求根公式求值,否则,原方程无实数根。(因为这样可以减少计算量。另外,求根公式对于任何一个一元二次方程都适用,其中也包括不完全的一元二次方程。)(4)因式分解法:因式分解法解一元二次方程的依据:如果两个因式的积等于 0,那么这两个因式至少有一个为 0,即:若ab 0,则a 0或b 0;因式分解法的一般步骤:b;2a若方程的右边不是零,则先移项,使方程的右边为零;把方程的左边分解因式;令每一个因式都为零,得到两个一元一次方程;解出这两个一元一次方程的解可得到原方程的两个解。(5)选用适当方法解一元二次方程对于无理系数的一元二次方程,可选用因式分解法,较之别的方法可能要简便的多,只不过应注意二次
5、根式的化简问题。方程若含有未知数的因式,选用因式分解较简便,若整理为一般式再解就较为麻烦。(6)解含有字母系数的方程(1)含有字母系数的方程,注意讨论含未知数最高项系数,以确定方程的类型;(2)对于字母系数的一元二次方程一般用因式分解法解,不能用因式分解的可选用别的方法,此时一定不要忘记对字母的取值进行讨论。三、根的判别式三、根的判别式1了解一元二次方程根的判别式概念,能用判别式判定根的情况,并会用判别式求一元二次方程中符合题意的参数取值范围。(1)=b2 4ac(2)根的判别式定理及其逆定理:对于一元二次方程ax2bx c 0(a 0)a 0当方程有实数根;0时a 0a 0(当方程有两个不相
6、等的实数根;当方程有两个相等的实数 0时 0时根;)a 0当方程无实数根;0时从左到右为根的判别式定理;从右到左为根的判别式逆定理。2常见的问题类型(1)利用根的判别式定理,不解方程,判别一元二次方程根的情况(2)已知方程中根的情况,如何由根的判别式的逆定理确定参数的取值范围(3)应用判别式,证明一元二次方程根的情况先计算出判别式(关键步骤);用配方法将判别式恒等变形;判断判别式的符号;总结出结论.(4)分类讨论思想的应用:如果方程给出的时未指明是二次方程,后面也未指明两个根,那一定要对方程进行分类讨论,如果二次系数为 0,方程有可能是一元一次方程;如果二次项系数不为 0,一元二次方程可能会有
7、两个实数根或无实数根。(5)一元二次方程根的判别式常结合三角形、四边形、不等式(组)等知识综合命题,解答时要在全面分析的前提下,注意合理运用代数式的变形技巧(6)一元二次方程根的判别式与整数解的综合(7)判别一次函数与反比例函数图象的交点问题四、一元二次方程的应用四、一元二次方程的应用1.数字问题:解答这类问题要能正确地用代数式表示出多位数,奇偶数,连续整数等形式。2.几何问题:这类问题要结合几何图形的性质、特征、定理或法则来寻找等量关系,构建方程,对结果要结合几何知识检验。3.增长率问题(下降率):在此类问题中,一般有变化前的基数(a),增长率(x),变化的次数(n),变化后的基数(b),这
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 一元 二次方程 知识点 及其 应用
![提示](https://www.taowenge.com/images/bang_tan.gif)
限制150内