八年级数学教案模板.pdf
《八年级数学教案模板.pdf》由会员分享,可在线阅读,更多相关《八年级数学教案模板.pdf(12页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、 1 八年级数学教案模板 数学定义的三个主要类型被称为逻辑学家,直觉主义者和形式主义者,每个都反映了不同的哲学思想学派。都有严重的问题,没有人普遍接受,没有和解似乎是可行的。下面是我给大家整理的八年级数学教案模板,仅供参考希望能够帮助到大家。八年级数学教案模板篇 1 一、教学目标 1.掌握等腰梯形的判定方法.2.能够运用等腰梯形的性质和判定进行有关问题的论证和计算,进一步培养学生的分析能力和计算能力.3.通过添加辅助线,把梯形的问题转化成平行四边形或三角形问题,使学生体会图形变换的方法和转化的思想 二、教法设计 小组讨论,引导发现、练习巩固 三、重点、难点 1.教学重点:等腰梯形判定.2.教学
2、难点:解决梯形问题的基本方法(将梯形转化为平行四边形和三角形及正确运用辅助线).四、课时安排 1 课时 五、教具学具准备 多媒体,小黑板,常用画图工具 六、师生互动活动设计 教师复习引入,学生阅读课本;学生在教师引导下探索等腰梯形的判定,归纳小结梯形转化的常见的辅助线 2 七、教学步骤【复习提问】1.什么样的四边形叫梯形,什么样的梯形是直角梯形、等腰梯形?2.等腰梯形有哪些性质?它的性质定理是怎样证明的?3.在研究解决梯形问题时的基本思想和方法是什么?常用的辅助线有哪几种?我们已经掌握了等腰梯形的性质,那么又如何来判定一个梯形是否是等腰梯形呢?今天我们就共同来研究这个问题.【引人新课】等腰梯形
3、判定定理:在同一底上的两个角相等的梯形是等腰梯形.前面我们用等腰三角形的定理证明了等腰梯形的性质定理,现在我们也可以用等腰三角形的判定定理来证明等腰梯形的判定定理.例 1 已知:如图,在梯形中,求证:.分析:我们学过“如果一个三角形中有两个角相等,那么它们所对的边相等.”因此,我们只要能将等腰梯形同一底上的两个角转化为等腰三角形的两个底角,定理就容易证明了.(引导学生口述证明方法,然后利用投影仪出示三种证明方法)(1)如图,过点作、,交于,得,所以得.又由得,因此可得.(2)作高、,通过证推出.(3)分别延长、交于点,则与都是等腰三角形,所以可得.(证明过程略).例 3 求证:对角线相等的梯形
4、是等腰梯形.已知:如图,在梯形中,.求证:.3 分析:证明本题的关键是如何利用对角线相等的条件来构造等腰三角形.在和中,已有两边对应相等,别人要能证,就可通过证得到.(引导学生说出证明思路,教师板书证明过程)证明:过点作,交延长线于,得,.,又、,.说明:如果、交于点,那么由可得,即等腰梯形对角线相交,可以得到以交点为顶点的两个等腰三角形,这个结论虽不能直接引用,但可以为以后解题提供思路.例 4 画一等腰梯形,使它上、下底长分别 5cm,高为 4cm,并计算这个等腰梯形的周长和面积.分析:如图,先算出长,可画等腰三角形,然后完成的画图.画法:画,使.延长到使.分别过、作,、交于点.四边形就是所
5、求的等腰梯形.解:梯形周长.答:梯形周长为 26cm,面积为.【总结、扩展】小结:(由学生总结)4(l)等腰梯形的判定方法:先判定它是梯形再用“两腰相等”“或同一底上的两个角相等”来判定它是等腰梯形.(2)梯形的画图:一般先画出有关的三角形,在此基础上再画出有关的平行四边形,最后得到所求图形.(三角形奠基法)八、布置作业 l.已知:如图,梯形中,、分别为、中点,且,求证:梯形为等腰梯形.九、板书设计 十、随堂练习 八年级数学教案模板篇 2 教学目标 知识与技能目标 1.经历平行四边形判别条件的探索过程,发现平行四边形的常用判别条件。2.掌握平行四边形的判别条件;对角线互相平分的四边形是平行四边
6、形;一组对边平行且相等的四边形是平行四边形;两组对边分别相等的四边形是平行四边形。3.逐步掌握说理的基本方法。过程与方法目标 1.在探索平行四边形的判别条件的过程中,发展学生的合情推理意识,主动探索的习惯。2.鼓励学生用多种方法进行说理。情感与态度目标 1.培养学生探索创新的能力,开拓学生思路,发展学生的思维能力。5 2.培养学生合作学习,增强学生的自我评价意识。教材分析 教材通过创设“钉制平行四边形框架”这一情境,便于学生发现和探索平行四边形的常用判别方法。如有条件可要求学生自己准备,由学生自我操作。也可由教师演示。教学重点:平行四边形的判别方法。教学难点:利用平行四边形的判别方法进行正确的
7、说理。学情分析 初二学生对平面图形的认识能力正在形成,抽象思维还不够,学习几何知识处于现象描述和说理的过渡时期。因此,对这部分内容的学习,要引导学生学会正确的说理,理清楚四边形在什么条件下用判定定理,在什么条件下用性质定理。教学流程 一、创设情境,引入新课 师:请同学们拿出课前准备的小木条,帮助小明的爸爸钉制平行四边形的框架。学生活动:学生按小组进行探索。八年级数学教案模板篇 3 教学建议 知识结构:重点难点分析:是商的二次根式的性质及利用性质进行二次根式的化简与运算,利用分母有理化化简.商的算术平方根的性质是本节的主线,学生掌握性质在二次根使得化简和运算的运用是关键,从化简与运算由引出初中重
8、要的内容之一分母有理化,分母有理化的理解决定了最简二次 6 根式化简的掌握.教学难点是二次根式的除法与商的算术平方根的关系及应用.二次根式的除法与乘法既有联系又有区别,强调根式除法结果的一般形式,避免分母上含有根号.由于分母有理化难度和复杂性大,要让学生首先理解分母有理化的意义及计算结果形式.教法建议:1.本节内容是在有积的二次根式性质的基础后学习,因此可以采取学生自主探索学习的模式,通过前一节的复习,让学生通过具体实例再结合积的性质,对比、归纳得到商的二次根式的性质.教师在此过程中给与适当的指导,提出问题让学生有一定的探索方向.2.本节内容可以分为三课时,第一课时讨论商的算术平方根的性质,并
9、运用这一性质化简较简单的二次根式(被开方数的分母可以开得尽方的二次根式);第二课时讨论二次根式的除法法则,并运用这一法则进行简单的二次根式的除法运算以及二次根式的乘除混合运算,这一课时运算结果不包括根号出现内出现分式或分数的情况;第三课时讨论分母有理化的概念及方法,并进行二次根式的乘除法运算,把运算结果分母有理化.这样安排使内容由浅入深,各部分相互联系,因此及彼,层层展开.3.引导学生思考想一想中的内容,培养学生思维的深刻性,教师组织学生思考、讨论过程中,鼓励学生大胆猜想,积极探索,运用类比、归纳和从特殊到一般的思考方法激发学生创造性的思维.教学设计示例 一、教学目标 1.掌握商的算术平方根的
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 年级 数学教案 模板
限制150内