九年级数学二模试题分类汇编——一元二次方程组综合含答案.pdf
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_05.gif)
《九年级数学二模试题分类汇编——一元二次方程组综合含答案.pdf》由会员分享,可在线阅读,更多相关《九年级数学二模试题分类汇编——一元二次方程组综合含答案.pdf(12页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、九年级数学二模试题分类汇编一元二次方程组综合含答案 一、一元二次方程 1如图,A、B、C、D 为矩形的 4 个顶点,AB16cm,BC6cm,动点 P、Q 分别以3cm/s、2cm/s 的速度从点 A、C 同时出发,点 Q 从点 C 向点 D 移动(1)若点 P 从点 A 移动到点 B 停止,点 P、Q 分别从点 A、C 同时出发,问经过 2s 时 P、Q两点之间的距离是多少 cm?(2)若点 P 从点 A 移动到点 B 停止,点 Q 随点 P 的停止而停止移动,点 P、Q 分别从点 A、C同时出发,问经过多长时间 P、Q 两点之间的距离是 10cm?(3)若点 P 沿着 ABBCCD 移动,
2、点 P、Q 分别从点 A、C 同时出发,点 Q 从点 C 移动到点D 停止时,点 P 随点 Q 的停止而停止移动,试探求经过多长时间 PBQ 的面积为 12cm2 【答案】(1)PQ=62cm;(2)85s 或245s;(3)经过 4 秒或 6 秒 PBQ 的面积为 12cm2【解析】试题分析:(1)作 PECD 于 E,表示出 PQ 的长度,利用 PE2+EQ2=PQ2列出方程求解即可;(2)设 x 秒后,点 P 和点 Q 的距离是 10cm在 Rt PEQ 中,根据勾股定理列出关于 x 的方程(16-5x)2=64,通过解方程即可求得 x 的值;(3)分类讨论:当点 P 在 AB 上时;当
3、点 P 在 BC 边上;当点 P 在 CD 边上时 试题解析:(1)过点 P 作 PECD 于 E 则根据题意,得 EQ=16-23-22=6(cm),PE=AD=6cm;在 Rt PEQ 中,根据勾股定理,得 PE2+EQ2=PQ2,即 36+36=PQ2,PQ=62cm;经过 2s 时 P、Q 两点之间的距离是 62cm;(2)设 x 秒后,点 P 和点 Q 的距离是 10cm(16-2x-3x)2+62=102,即(16-5x)2=64,16-5x=8,x1=85,x2=245;经过85s 或245sP、Q 两点之间的距离是 10cm;(3)连接 BQ设经过 ys 后 PBQ 的面积为
4、12cm2 当 0y163时,则 PB=16-3y,12PBBC=12,即12(16-3y)6=12,解得 y=4;当163x223时,BP=3y-AB=3y-16,QC=2y,则 12BPCQ=12(3y-16)2y=12,解得 y1=6,y2=-23(舍去);223x8 时,QP=CQ-PQ=22-y,则 12QPCB=12(22-y)6=12,解得 y=18(舍去)综上所述,经过 4 秒或 6 秒 PBQ 的面积为 12cm2 考点:一元二次方程的应用 2阅读下列材料 计算:(1)(+)(1)(+),令+t,则:原式(1t)(t+)(1t)tt+t2+t2 在上面的问题中,用一个字母代表
5、式子中的某一部分,能达到简化计算的目的,这种思想方法叫做“换元法”,请用“换元法”解决下列问题:(1)计算:(1)(+)(1)(+)(2)因式分解:(a25a+3)(a25a+7)+4(3)解方程:(x2+4x+1)(x2+4x+3)3【答案】(1);(2)(a25a+5)2;(3)x10,x24,x3x42【解析】【分析】(1)仿照材料内容,令+t 代入原式计算(2)观察式子找相同部分进行换元,令 a25at 代入原式进行因式分解,最后要记得把t 换为 a(3)观察式子找相同部分进行换元,令 x2+4xt 代入原方程,即得到关于 t 的一元二次方程,得到 t 的两个解后要代回去求出 4 个
6、x 的解【详解】(1)令+t,则:原式(1t)(t+)(1t)tt+t2t+t2+(2)令 a25at,则:原式(t+3)(t+7)+4t2+7t+3t+21+4t2+10t+25(t+5)2(a25a+5)2(3)令 x2+4xt,则原方程转化为:(t+1)(t+3)3 t2+4t+33 t(t+4)0 t10,t24 当 x2+4x0 时,x(x+4)0 解得:x10,x24 当 x2+4x4 时,x2+4x+40(x+2)20 解得:x3x42【点睛】本题考查用换元法进行整式的运算,因式分解,解一元二次方程利用换元法一般可达到降次效果,从而简便运算 3解方程:x22x2x1.【答案】x1
7、25,x225.【解析】试题分析:根据方程,求出系数 a、b、c,然后求一元二次方程的根的判别式,最后根据求根公式242bbacxa 求解即可.试题解析:方程化为 x24x10.b24ac(4)241(1)20,x420225,x125,x225.4解方程:2212xx6x9()【答案】124xx23,【解析】试题分析:先对方程的右边因式分解,直接开平方或移项之后再因式分解法求解即可.试题解析:因式分解,得 2212xx3()()开平方,得 1 2xx3,或1 2xx3()解得124xx23,5解方程:2332302121xxxx【答案】x=15或 x=1【解析】【分析】设321xyx,则原方
8、程变形为 y2-2y-3=0,解这个一元二次方程求 y,再求 x【详解】解:设321xyx,则原方程变形为 y2-2y-3=0 解这个方程,得 y1=-1,y2=3,3121xx 或3321xx 解得 x=15或 x=1 经检验:x=15或 x=1 都是原方程的解 原方程的解是 x=15或 x=1【点睛】考查了还原法解分式方程,用换元法解一些复杂的分式方程是比较简单的一种方法,根据方程特点设出相应未知数,解方程能够使问题简单化,注意求出方程解后要验根 6按上述方案,一家酒店四、五两月用水量及缴费情况如下表所示,那么,这家酒店四、五两月的水费分别是按哪种方案计算的?并求出的值.月份 用水量(吨)
9、水费(元)四月 35 59.5 五月 80 151 【答案】7已知为正整数,二次方程的两根为,求下式的值:【答案】【解析】由韦达定理,有,于是,对正整数,有 原式=8解方程:(x1)(x1)22x.【答案】x123,x223.【解析】试题分析:根据方程的特点,根据平方差公式化为一般式,然后可根据公式法求解即可.试题解析:(x1)(x1)22x x2-22x-1=0 a=1,b=-2 2,c=-1 =b2-4ac=8+4=120 x=242bbcaa=23 x123,x223.9已知关于 x 的方程 x22x+m20 有两个不相等的实数根(1)求 m 的取值范围;(2)如果 m 为正整数,且该方
10、程的根都是整数,求 m 的值【答案】(1)m3;(2)m2【解析】【分析】(1)根据题意得出 0,代入求出即可;(2)求出 m=1 或 2,代入后求出方程的解,即可得出答案【详解】(1)方程有两个不相等的实数根 44(m2)0 m3;(2)m3 且 m 为正整数,m1 或 2 当 m1 时,原方程为 x22x10它的根不是整数,不符合题意,舍去;当 m2 时,原方程为 x22x0 x(x2)0 x10,x22符合题意 综上所述,m2【点睛】本题考查了根的判别式和解一元二次方程,能根据题意求出 m 的值和 m 的范围是解此题的关键 10关于 x 的一元二次方程(k-2)x2-4x+2=0 有两个
11、不相等的实数根(1)求 k 的取值范围;(2)如果 k 是符合条件的最大整数,且一元二次方程 x2-4x+k=0 与 x2+mx-1=0 有一个相同的根,求此时 m 的值【答案】(1)k4 且 k2.(2)m=0 或 m=83.【解析】分析:(1)由题意,根据一元二次方程的定义和一元二次方程根的判别式列出关于 k 的不等式组,解不等式组即可求得对应的 k 的取值范围;(2)由(1)得到符合条件的 k 的值,代入原方程,解方程求得 x 的值,然后把所得 x 的值分别代入方程 x2+mx-1=0 即可求得对应的 m 的值.详解:(1)一元二次方程(k-2)x2-4x+2=0 有两个不相等的实数根,
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 九年级 数学 试题 分类 汇编 一元 二次 方程组 综合 答案
![提示](https://www.taowenge.com/images/bang_tan.gif)
限制150内