北师大版九年级数学下册《第三章小结与复习》ppt课件.ppt
《北师大版九年级数学下册《第三章小结与复习》ppt课件.ppt》由会员分享,可在线阅读,更多相关《北师大版九年级数学下册《第三章小结与复习》ppt课件.ppt(50页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、小结与复习第三章 圆要点梳理考点讲练课堂小结课后作业一、圆的基本概念及性质1.定义:平面上到定点的距离等于定长的所有点组成的图形叫做圆.2.有关概念:(1)弦、直径(圆中最长的弦)(2)弧、优弧、劣弧、等弧(3)弦心距O要点梳理要点梳理3.不在同一条直线上的三个点确定一个圆.二、点与圆的位置关系A AB BC C点与圆的位置关系点到圆心的距离d与圆的半径r之间的关系点在圆外点在圆上点在圆内O Od dr rdrdrd=rd=rdrdr三、圆的对称性1.圆是轴对称图形,经过圆心的每一条直线都是 它的对称轴.圆有无数条对称轴.2.圆是中心对称图形,并且绕圆心旋转任何一 个角度都能与自身重合,即圆具
2、有旋转不变性.3.在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等 4.4.在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余 各组量都分别相等OABCDMAM=BM,若 CD是直径 CDAB可推得AC=BC,AD=BD.垂径定理:垂直于弦的直径平分弦,并且平分弦所对的两条弧.四、垂径定理及推论垂径定理的逆定理CDAB,n由 CD是直径 AM=BM可推得AC=BC,AD=BD.OCD AB平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.M定义:顶点在圆周上,两边和圆相交的角,叫做圆周角.圆周角定理:圆周角的度数等于它所对弧上的圆心角的一半.五、
3、圆周角和圆心角的关系BAC=BOC推论:同弧或等弧所对的圆周角相等.ADB与AEB、ACB 是同弧所对的圆周角ADB=AEB=ACB推论:直径所对的圆周角是直角;90的圆周角所对的弦是圆的直径.推论:圆的内接四边形的对角互补.六、直线和圆的位置关系直线与圆的位置关系圆心与直线的距离d与圆的半径r的关系直线名称直线与圆的交点个数相离相切相交ldr0切线d r2d rd=r1割线七、切线的判定与性质1.切线的判定一般有三种方法:a.定义法:和圆有唯一的一个公共点b.距离法:d=rc.判定定理:过半径的外端且垂直于半径2.切线的性质圆的切线垂直于过切点的半径.切线长定理:从圆外一点可以引圆的两条切线
4、,它们的切线长相等.这一点和圆心的连线平分这两条切线的夹角.切线长:从圆外一点引圆的切线,这个点与切点间的线段的长称为切线长.3.切线长及切线长定理八、三角形的内切圆及内心1.与三角形各边都相切的圆叫做三角形的内切圆.2.三角形内切圆的圆心叫做三角形的内心.3.三角形的内心就是三角形的三条角平分线的交点.ACIDEF三角形的内心到三角形的三边的距离相等.重要结论问题1OCDABM半径R圆心角弦心距r弦a圆心中心角ABCDEFO半径R边心距r中心类比学习圆内接正多边形外接圆的圆心正多边形的中心外接圆的半径正多边形的半径每一条边所对的圆心角正多边形的中心角弦心距正多边形的边心距M九、圆内接正多边形
5、概念1.正n边形的中心角=CDOBEFAP3.正n边形的边长a,半径R,边心距r之间的关系:aRr4.边长a,边心距r的正n边形面积的计算:其中l为正n边形的周长.2.正多边形的内角=计算公式(1)弧长公式:)弧长公式:(2)扇形面积公式:)扇形面积公式:十、弧长及扇形的面积考点一 圆的有关概念及性质例1 如图,在O中,ABC=50,则CAO等于()A30B40C50D60B例2 在图中,BC是O的直径,ADBC,若D=36,则BAD的度数是()A.72 B.54 C.45 D.36 ABCDB例3 O的半径为R,圆心到点A的距离为d,且R、d分别是方程x26x80的两根,则点A与O的位置关系
6、是()A点A在O内部 B点A在O上C点A在O外部 D点A不在O上解析:此题需先计算出一元二次方程x26x80的两个根,然后再根据R与d的之间的关系判断出点A与 O的关系.D1.如图所示,在圆O中弦ABCD,若ABC=50,则BOD等于()A50B40C100D80C针对训练1352.如图a,四边形ABCD为O的内接正方形,点P为劣弧BC上的任意一点(不与B,C重合),则BPC的度数是 .CDBAPO图a考点二 垂径定理 例4 工程上常用钢珠来测量零件上小圆孔的宽口,假设钢珠的直径是10mm,测得钢珠顶端离零件表面的距离为8mm,如图所示,则这个小圆孔的宽口AB的长度为 mm.8mmAB8CDO
7、解析 设圆心为O,连接AO,作出过点O的弓形高CD,垂足为D,可知AO=5mm,OD=3mm,利用勾股定理进行计算,AD=4mm,所以AB=8mm.AOBCEF图a3.如图a,点C是扇形OAB上的AB的任意一点,OA=2,连接AC,BC,过点O作OE AC,OF BC,垂足分别为E,F,连接EF,则EF的长度等于 .(针对训练ABCDP O图bDP4.如图b,AB是 O的直径,且AB=2,C,D是同一半圆上的两点,并且AC与BD的度数分别是96 和36,动点P是AB上的任意一点,则PC+PD的最小值是 .(例5 如图,在RtABC中,ABC=90,以AB为直径的O交AC于点D,连接BD.考点三
8、 切线的判定与性质解:(1)AB是直径,ADB=90.AD=3,BD=4,AB=5.CDB=ABC,A=A,ADBABC,即 BC=(1)若AD=3,BD=4,求边BC的长.又OBD+DBC=90,C+DBC=90,C=OBD,BDO=CDE.AB是直径,ADB=90,BDC=90,即BDE+CDE=90.BDE+BDO=90,即ODE=90.ED与O相切.(2)证明:连接OD,在RtBDC中,E是BC的中点,CE=DE,C=CDE.又OD=OB,ODB=OBD.(2)取BC的中点E,连接ED,试证明ED与O相切.例6(多解题)如图,直线AB,CD相交于点O,AOD=30,半径为1cm的P的圆
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 第三章小结与复习 北师大 九年级 数学 下册 第三 小结 复习 ppt 课件
限制150内