必修四_平面向量知识点梳理课件.ppt
《必修四_平面向量知识点梳理课件.ppt》由会员分享,可在线阅读,更多相关《必修四_平面向量知识点梳理课件.ppt(56页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、 必修四必修四 平面向量平面向量知识点梳理知识点梳理1知知识识网网络络平面向量加法、减法加法、减法 数乘向量数乘向量坐标表示坐标表示两向量数量积两向量数量积零向量、单位向量、零向量、单位向量、共线向量、相等向量共线向量、相等向量向量平行的充要条件向量平行的充要条件平面向量基本定理平面向量基本定理两向量的夹角公式两向量的夹角公式向量垂直的充要条件向量垂直的充要条件两点的距离公式两点的距离公式向量的概念向量的概念解决解决图形图形的平的平行和行和比例比例问题问题解决解决图形图形的垂的垂直和直和角度角度,长度长度问题问题向量的初步应用2向量定义:向量定义:既有既有大小大小又有又有方向方向的量叫向量。的
2、量叫向量。重要概念:重要概念:(1)零向量:)零向量:长度为长度为0的向量,记作的向量,记作0.(2)单位向量:)单位向量:长度为长度为1个单位长度的向量个单位长度的向量.(3)平行向量:)平行向量:也叫共线向量,方向相同或相反也叫共线向量,方向相同或相反的非零向量的非零向量.(4)相等向量:)相等向量:长度相等且方向相同的向量长度相等且方向相同的向量.(5)相反向量:)相反向量:长度相等且方向相反的向量长度相等且方向相反的向量.一、平面向量概念一、平面向量概念3几何表示几何表示 :有向线段有向线段向向量量的的表表示示字母表示字母表示 坐标表示坐标表示 :(x,y)若若 A(x1,y1),B(
3、x2,y2)则则 AB=(x2 x1,y2 y1)一、平面向量概念一、平面向量概念4向量的模(长度)向量的模(长度)1.设设 a=(x ,y),则则2.若表示向量若表示向量 a 的起点和终点的坐标分别的起点和终点的坐标分别 为为A A(x1,y1)、B(x2,y2),则,则一、平面向量概念一、平面向量概念51.向量的加法运算向量的加法运算ABC AB+BC=三角形法则三角形法则OABC OA+OB=平行四边形法则平行四边形法则坐标运算坐标运算:则则a +b=重要结论:重要结论:AB+BC+CA=0设设 a=(x1,y1),b=(x2,y2)(x1+x2,y1+y2)AC OC一、平面向量概念一
4、、平面向量概念62.向量的减法运算向量的减法运算1)减法法则:)减法法则:OAB2)坐标运算)坐标运算:若若 a=(x1,y1),b=(x2,y2)则则a b=3 3.加加法减法运算律法减法运算律a+b=b+a(a+b)+c=a+(b+c)1)交换律:)交换律:2)结合律:)结合律:BA(x1 x2,y1 y2)OAOB=一、平面向量概念一、平面向量概念7练习8120oADBCO9120oADBCOreturn104.实数实数与向量与向量 a 的积的积定义定义:坐标运算:坐标运算:其实质就是向量的伸长或缩短!其实质就是向量的伸长或缩短!a a是一个是一个是一个是一个向量向量.它的它的它的它的长
5、度长度长度长度|a a|=|=|a|;它的它的它的它的方向方向方向方向若若a a=(x,y),则则 a a=(x,y)=(x,y)(2)(2)当当当当 0 0时时时时,a a 的方向的方向的方向的方向与与与与a a方向方向方向方向相反相反相反相反.(1)(1)当当当当00时时时时,a a 的方向的方向的方向的方向与与与与a a方向方向方向方向相同相同相同相同;一、平面向量概念一、平面向量概念11则则存在唯一实数存在唯一实数,使得,使得结论结论:设表示与非零向量同向的单位向量设表示与非零向量同向的单位向量.定理定理1:两个非零向量两个非零向量平行平行(方向相同或相反方向相同或相反)一、平面向量概
6、念一、平面向量概念12向量垂直充要条件的两种形式向量垂直充要条件的两种形式:二、平面向量之间关系向量平行向量平行(共线共线)充要条件的两种形式充要条件的两种形式:13(3)两个向量相等的充要条件是两个向量的)两个向量相等的充要条件是两个向量的坐标相等坐标相等.即即:那么那么 三、平面向量的基本定理平面向量的基本定理如果如果 是同一平面内的两个是同一平面内的两个不共线不共线向量,那么对于这一平面内的任一向向量,那么对于这一平面内的任一向量量 ,有且只有有且只有一对实数一对实数 使使141、平面向量数量积的定义:、平面向量数量积的定义:2、数量积的几何意义:、数量积的几何意义:OABB1(四四)数
7、量积数量积4、运算律、运算律:3、数量积的坐标运算、数量积的坐标运算155、数量积的主要性质及其坐标表示:、数量积的主要性质及其坐标表示:16OBA综上所述:原命题成立综上所述:原命题成立17CNDBMOA解解:18CNDBMOA19例例3、已知已知a=(3,-2),b=(-2,1),c=(7,-4),用用a、b表示表示c。解:解:c=m a+n b (7,-4)=m(3,-2)+n(-2,1)3m-2n=7 m=1 -2m+n=-4 n=-2 c=a-2b20O A B P另解另解:可以试着将可以试着将21 说明:说明:(1)本题是个重要题型:设本题是个重要题型:设O为为平面上任一点,则:平
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 必修 平面 向量 知识点 梳理 课件
限制150内