华师版七年级数学下册期末复习PPT全套课件.pptx
《华师版七年级数学下册期末复习PPT全套课件.pptx》由会员分享,可在线阅读,更多相关《华师版七年级数学下册期末复习PPT全套课件.pptx(102页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、小结与复习第六章 一元一次方程要点梳理要点梳理一、方程的有关概念 1.方程:含有未知数的等式叫做方程2.一元一次方程的概念:只含有_个未知数,未知数的次数都是_,等号两边都是_,这样的方程叫做一元一次方程3.方程的解:使方程左右两边的值相等的未知数的值叫做方程的解,一元方程的解,也叫它的根4.解方程:求方程解的过程叫做解方程一1整式等式的性质:(1)等式两边加(或减)同一个数(或式子),结果仍相等如果ab,那么a_bc.(2)等式两边乘同一个数,或除以同一个不为0的数,结果仍相等如果ab,那么ac_或_(c0)二、等式的基本性质bcc解一元一次方程的一般步骤:(1)去分母:方程两边都乘各分母的
2、最小公倍数,别漏乘(2)去括号:注意括号前的系数与符号(3)移项:把含有未知数的项移到方程的左边,常数项移到方程右边,移项注意要改变符号(4)合并同类项:把方程化成axb(a0)的形式(5)系数化为1:方程两边同除以x的系数,得xm的形式三、一元一次方程的解法 1.列方程(组)的应用题的一般步骤:审:审清题意,分清题中的已知量、未知量设:设未知数,设其中某个未知量为x.列:根据题意寻找等量关系列方程解:解方程验:检验方程的解是否符合题意答:写出答案(包括单位)注意审题是基础,找等量关系是关键.四、实际问题与一元一次方程2.常见的几种方程类型及等量关系:(1)行程问题中基本量之间关系:路程速度时
3、间相遇问题:全路程甲走的路程乙走的路程;追及问题:甲为快者,被追路程甲走路程乙走路程;流水问题:v顺v静v水,v逆v静v水考点讲练考点讲练考点一 方程的有关概念【解析】将x2代入方程得1a1,得a2.C方法总结 已知方程的解就相当于已知方程中未知数的值,这个值能够使方程的左右两边的值相等.针对训练1.若(m3)x|m|221是关于x的一元一次方程,则m的值为_3为什么m的值不能为3?考点二 等式的基本性质【解析】选项A的变形是在等式左边减去x,等式右边减去(x2)是错误的;B的变形是在方程两边都除以x,是错误的;C在依据规则将系数化为1中出错;D正确D针对训练B注意:a可能为0考点三 一元一次
4、方程的解法【解析】对于第(1)题,将方程的两边同乘以12,约去分母,然后求解;对于第(2)题,先用分配律、去括号简化方程,再求解较容易针对训练考点四 实际问题与一元一次方程例4.一轮船在甲、乙两码头间往返航行,已知船在静水中速度为7km/h,水流速度为2km/h,往返一次共用28h,求甲、乙两码头之间的距离解:设甲、乙两码头之间的距离是xkm,相等关系:顺水航行时间逆水航行时间往返一次共用时间依题意得解得x=90答:甲、乙两码头之间的距离是90km方法总结1.顺水航行所用时间+逆水航行所用时间=总时间.2.顺流速度=船在静水中速度+水流速度,逆流速度=船在静水中速度水流速度.针对训练4.小明从
5、家里骑自行车到学校,每小时骑15千米,可早到10;每小时骑12千米,就会迟到5,则他家到学校的路程是多少千米?解:设他家到学校的路程是x千米,依题意得解得x=15答:他家到学校的路程是15千米.例5一项工作,甲单独做8天完成,乙单独做12天完成,丙单独做24天完成现甲、乙合作3天后,甲因有事离去,由乙、丙合作,则乙、丙还要几天才能完成这项工作?解:设乙、丙还要x天才能完成这项工作,相等关系:甲、乙合作3天的工作量+乙、丙合作的工作量=1依题意得解得x=3答:乙、丙还要3天才能完成这项工作方法总结1.工作量=工作时间工作效率.2.工程问题中的一般相等关系:如果一件工作分几个 阶段完成,那么各阶段
6、工作量的和等于总工作量.针对训练5.一辆拖拉机耕一片地,第一天耕了这片地的,第二天耕了剩余部分的,还剩下42公顷,则这片地共有公顷.【解析】设这片地共有x公顷.由题意,得解得x=189.189课堂小结课堂小结去括号移项合并同类项方 程 的 概 念概念实际问题去分母系数化为1解法步骤方 程一元一次方程第七章 小结与复习一、二(三)元一次方程组的有关概念 1.二元一次方程的概念:含有_未知数的_方程,叫做二元一次方程.2.二元一次方程组的概念:由两个_方程组成的含有_未知数的方程组叫做二元一次方程组.3.二元一次方程组的解:使二元一次方程组中每个方程都成立的两个未知数的值,叫做二元一次方程组的解.
7、4.三元一次方程组的概念:由三个_方程组成的含有_未知数的方程组叫做三元一次方程组.两个一次一次两个一次三个要点梳理要点梳理二、二元一次方程组的解法(1)代入法:从一个方程中求出某一个未知数的表达式,再把它“代入”另一个方程,进行求解,这种方法叫做代入消元法,简称代入法.(2)加减法:把方程的两边分别相加或相减消去一个未知数的方法,叫做加减消元法,简称加减法.五、三元一次方程组的解法 消元法:通过消元,把一个较复杂的三元一次方程组转化为简单易解的阶梯形的方程组,从而通过回代得出其解,整个求解过程称为用消元法解三元一次方程组.1.列方程组的应用题的一般步骤:审:审清题意,分清题中的已知量、未知量
8、设:设未知数.列:根据题意寻找等量关系列方程解:解方程(组)验:检验方程的解是否符合题意答:写出答案(包括单位)注意审题是基础,找等量关系是关键.三、用一次方程组解决实际问题2.常见的几种方程类型及等量关系:(1)行程问题中基本量之间的关系:路程速度时间;相遇问题:全路程甲走的路程乙走的路程;追及问题:甲为快者,被追路程甲走路程乙走路程;流水问题:v顺v静v水,v逆v静v水(2)等积变形问题中基本量之间的关系:原料面积=成品面积;原料体积=成品体积.(4)销售问题中基本量之间的关系:实际售价-进价(成本)=利润;利润进价100%=利润率;进价(1+利润率)=售价;标价折扣数10=进价.(3)储
9、蓄问题中基本量之间的关系:本金利率年数=利息;本金+利息=本息和.考点讲练考点讲练考点一 方程(组)的有关概念例1.若(a-3)x+y|a|-29是关于x,y的二元一次方程,则a的值为_【解析】由题意,未知数x的系数为a-3,所以a-30.由未知数y的次数为|a|-2,所以|a|-2=1,即a=3.但a 3.所以a=-3.3针对训练1.若xm-yn+2=3是二元一次方程,则mn的值为_1考点二 二(三)元一次方程组的解法例2 解下列方程组解:由得,x=3+2y.将代入中,3(3+2y)-8y=13 解得y=-2.将y=-2代入中,得x=-1.所以原方程组的解为解:原方程组可化简为由2+,得11
10、x=22,所以x=2.将x=2代入中,得8-y=5,解得y=3.所以原方程组的解为解:设解得所以即解得则原方程组可化为方程组中有分数形式,这类方程组可以利用设参数的方法进行消元.解:+4,得17x+5y=85.3-,得7x-y=35.解由组成的方程组,得x=5,y=0.把x=5,y=0代入中,得15-z=18,即 z=-3.所以,原方程组的解为针对训练解:将代入中,得1+y+2y=10,解得y=3.将y=3代入中,得 所以,原方程的解为2 解下列方程组解:设 得x=2k,y=3k,z=4k.将其代入方程中,得2k+3k+4k=45.即k=5.所以,原方程组的解为考点三 实际问题与一次方程(组)
11、例3.已知现有含盐20%与含盐8%的盐水,若需配置含盐15%的盐水300千克,求这两种盐水各需多少千克?解:配置300千克含盐15%的盐水,需含盐20%的盐水x千克,需含盐8%的盐水y千克.相等关系:含盐20%的盐水质量+含盐8%的盐水质量=300.两种盐水中的含盐量之和=30015%.依题意得解方程组得:x=175,y=125.答:需含盐20%的盐水175千克,需含盐8%的盐水125千克.针对训练3.某学校去年有学生1000人,今年比去年总的人数增加3.4%,其中寄宿生增加了6%,走读生减少了20%,问该校去年寄宿生与走读生各是多少人?解:设该校去年寄宿生x人,走读生y人.相等关系:去年寄宿
12、生人数+去年走读生人数=1000.寄宿生增加的人数-走读生减少的人数=增加的人数.依题意得解方程组得:x=900,y=100.答:该校去年寄宿生900人,走读生100人.例4.用白铁皮做罐头盒,每张铁皮可制成盒身25个,或制盒底40个,一个盒身和两个盒底配成一套罐头盒,现有36张白铁皮,用多少张制盒身,多少张制盒底可以使盒身与盒底正好配套?解:设用x张制盒身,y张制盒底,可使盒身与盒底正号配套.相等关系:制作盒身的铁皮+制作盒底的铁皮=36.盒底的数量=2盒身的数量.依题意得解方程组得答:用16张制盒身,20张制盒底,可使盒身与盒底正号配套.针对训练4.某工地需要派48人去挖土和运土,如果每人
13、每天平均挖土5方或运土3方,那么应该怎样安排人员,正好能使挖的土及时运走?解:设用x人挖土,y人运土,正好使挖的土及时运走.相等关系:挖土的人员+运土的人员=48.挖土的数量=运土的数量.依题意得解方程组得答:设用18人挖土,30人运土,正好使挖的土及时运走.课堂小结课堂小结一次方程与方程组概念与性质应用一元一次方程等式的性质二元一次方程一元一次方程组一元一次方程组方程的解性质1性质2性质3性质4解方程方程(组)的解二元一次方程组一元一次方程实际问题方程(组)消元代入法加减法第八章 小结与复习要点梳理要点梳理一、不等式的有关概念二、不等式的基本性质1.性质1:如果ab,那么a+c ,且a-c
14、.b+cb-c2.性质2:如果a b,c 0,那么ac bc,.3.性质3:如果a b,c 0,那么ac bc,.b,b c,那么a c.不等号一元一次不等式一元一次不等式组不等式的解集不等式组的解集不等式 解一元一次不等式和解一元一次方程类似,有 去分母 去括号 移项 合并同类项 系数化为1等步骤.三、解一元一次不等式四、解一元一次不等式组1.分别求出不等式组中各个不等式的解集;2.利用数轴求出这些不等式的解集的公共部分.a a b b a a b b a a b b a a b b同大取大同小取小大小小大中间找大大小小无处找xbxaaxb,bc B.若ab,则acbcC.若ab,则ac2b
15、c2 D.若ac2bc2,则abD考点一 运用不等式的基本性质求解【解析】选项A,由ab,bc;选项B,ab,当c=0时,ac=bc,不能根据不等式的性质确定acbc;选项C,ab,当c=0时,ac2=bc2,不能根据不等式的性质确定ac2bc2;选项D,ac2bc2,隐含c0,可以根据不等式的性质在不等式的两边同时除以正数c2,从而确定ab.1.已知ab,则下列各式不成立的是()A.3a3b B.-3a-3bC.a-3b-3 D.3+a2的解集为则a的取值范围是()A.a0 B.a1 C.a0 D.a1B方法总结利用不等式性质时,一定要注意不等式的两边都乘(或除以)的数是正数还是负数.例2解
16、不等式:.并把解集表示在数轴上.解:去分母,得2(2x-1)-(9x+2)6,去括号,得4x-2-9x-26,移项,得4x-9x6+2+2,合并同类项,得-5x10,系数化1,得x-2.不等式的解集在数轴上表示如图所示.01-2-1-3-4-523【解析】解一元二次不等式的一般步骤是:去分母、去括号、移项、合并同类项、系数化为1.考点二 解一元一次不等式3.不等式2x-16的正整数解是.1,2,34.已知关于x的方程2x+4=m-x的解为负数,则m的取值范围是.m4针对训练方法总结 先求出不等式的解集,然后根据“大于向右画,小于向左画,含等号用实心圆点,不含等号用空心圆圈”的原则在数轴上表示解
17、集.例3解不等式组把解集在数轴上表示出来,并将解集中的整数解写出来.解:解不等式,得x3,解不等式,得所以这个不等式组的解集是解集在数轴上表示如下:考点三 解一元一次不等式组【解析】先分别求出不等式中每个不等式的解集,然后通过数轴找出解集的公共部分,即为不等式组的解集.通过观察数轴可知该不等式组的整数解为2,3.231045.使不等式x-12与3x-7B.mC.m D.mC考点四 不等式、不等式组的实际应用例4某小区计划购进甲、乙两种树苗,已知甲、乙两种树苗每株分别为8元、6元.若购买甲、乙两种树苗共360株,并且甲树苗的数量不少于乙树苗的一半,请你设计一种费用最少的购买方案.解:设购买甲树苗
18、的数量为x株,依题意,得解得x120.购买甲树苗120株,乙树苗240株,此时费用最省.甲树苗比乙树苗每株多2元,要节省费用,则要尽量少买甲树苗.又x最小为120,方法总结 解不等式的应用问题的步骤包括审、设、列、解、找、答这几个环节,而在这些步骤中,最重要的是利用题中的已知条件,列出不等式(组),然后通过解出不等式(组)确定未知数的范围,利用未知数的特征(如整数问题),依据条件,找出对应的未知数的确定数值,以实现确定方案的解答.一 元一 次不 等式(组)不等式不等式的解集一元一次不等式一元一次不等式组解集数 轴 表 示不等式的基本性质解集数轴表示课堂小结课堂小结解法解法实 际应 用第九章 小
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 华师版 七年 级数 下册 期末 复习 PPT 全套 课件
限制150内