一阶电路和二阶电路的时域分析.pptx
《一阶电路和二阶电路的时域分析.pptx》由会员分享,可在线阅读,更多相关《一阶电路和二阶电路的时域分析.pptx(109页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、含有动态元件电容和电感的电路称动态电路。含有动态元件电容和电感的电路称动态电路。1 1.动态电路动态电路 7.1 动态电路的方程及其初始条件 当动态电路状态发生改变时(换路)需要当动态电路状态发生改变时(换路)需要经历一个变化过程才能达到新的稳定状态。这经历一个变化过程才能达到新的稳定状态。这个变化过程称为电路的过渡过程。个变化过程称为电路的过渡过程。下 页上 页特点返 回第1页/共109页例例0ti过渡期为零电阻电路电阻电路下 页上 页+-usR1R2(t=0)i返 回第2页/共109页i=0 ,uC=Usi=0 ,uC=0 k接通电源后很长时间接通电源后很长时间,电容充电完毕,电路,电容充
2、电完毕,电路达到新的稳定状态:达到新的稳定状态:k未动作前未动作前,电路处于稳定状态:,电路处于稳定状态:电容电路电容电路下 页上 页k+uCUsRCi(t=0)+-(t)+uCUsRCi+-前一个稳定状态前一个稳定状态过渡状态过渡状态新的稳定状态新的稳定状态t1USuct0?i有一过渡期返 回第3页/共109页uL=0,i=Us/Ri=0 ,uL=0 k接通电源后很长时间接通电源后很长时间,电路达到新的稳定,电路达到新的稳定状态,电感视为短路:状态,电感视为短路:k未动作前未动作前,电路处于稳定状态:,电路处于稳定状态:电感电路电感电路下 页上 页k+uLUsRi(t=0)+-L(t)+uL
3、UsRi+-前一个稳定状态前一个稳定状态过渡状态过渡状态新的稳定状态新的稳定状态t1US/Rit0?uL有一过渡期返 回第4页/共109页过渡过程产生的原因过渡过程产生的原因 电路内部含有储能元件电路内部含有储能元件 L、C,电路在换路时,电路在换路时能量发生变化,而能量的储存和释放都需要一定的能量发生变化,而能量的储存和释放都需要一定的时间来完成。时间来完成。电路结构、状态发生变化电路结构、状态发生变化换路换路支路接入或断开支路接入或断开电路参数变化电路参数变化下 页上 页返 回第5页/共109页应用应用KVL和电容的和电容的VCR得:得:若以电流为变量:若以电流为变量:2 2.动态电路的方
4、程动态电路的方程下 页上 页(t 0)+uCUsRCi+-例例RC电路电路返 回第6页/共109页应用应用KVL和电感的和电感的VCR得得:若以电感电压为变量:若以电感电压为变量:下 页上 页(t 0)+uLUsRi+-RL电路电路返 回第7页/共109页有源 电阻 电路 一个动态元件一阶电路下 页上 页结论 含有一个动态元件电容或电感的线性电含有一个动态元件电容或电感的线性电路,其电路方程为一阶线性常微分方程,称路,其电路方程为一阶线性常微分方程,称一阶电路。一阶电路。返 回第8页/共109页二阶电路下 页上 页(t 0)+uLUsRi+-CuCRLC电路电路应用应用KVL和元件的和元件的V
5、CR得得:含有二个动态元件的线性电路,其电路方程含有二个动态元件的线性电路,其电路方程为二阶线性常微分方程,称二阶电路。为二阶线性常微分方程,称二阶电路。返 回第9页/共109页一阶电路一阶电路一阶电路中只有一个动态元件一阶电路中只有一个动态元件,描述描述电路的方程是一阶线性微分方程。电路的方程是一阶线性微分方程。描述动态电路的电路方程为微分方程;描述动态电路的电路方程为微分方程;动态电路方程的阶数通常等于电路中动态元件的个数。二阶电路二阶电路二阶电路中有二个动态元件二阶电路中有二个动态元件,描述描述电路的方程是二阶线性微分方程。电路的方程是二阶线性微分方程。下 页上 页结论返 回第10页/共
6、109页高阶电路高阶电路电路中有多个动态元件,描述电路中有多个动态元件,描述电路的方程是高阶微分方程。电路的方程是高阶微分方程。动态电路的分析方法动态电路的分析方法根据根据KVL、KCL和和VCR建立微分方程;建立微分方程;下 页上 页返 回第11页/共109页复频域分析法复频域分析法时域分析法求解微分方程求解微分方程经典法经典法状态变量法状态变量法数值法数值法卷积积分卷积积分拉普拉斯变换法拉普拉斯变换法状态变量法状态变量法付氏变换付氏变换本章采用 工程中高阶微分方程应用计算机辅助分析求解。工程中高阶微分方程应用计算机辅助分析求解。下 页上 页返 回第12页/共109页稳态分析和动态分析的区别
7、稳态分析和动态分析的区别稳态稳态动态动态换路发生很长时间后状态换路发生很长时间后状态微分方程的特解微分方程的特解恒定或周期性激励恒定或周期性激励换路发生后的整个过程换路发生后的整个过程微分方程的通解微分方程的通解任意激励任意激励下 页上 页直流时直流时返 回第13页/共109页 t=0与与t=0的概念的概念认为换路在认为换路在t=0时刻进行时刻进行0 换路前一瞬间换路前一瞬间 0 换路后一瞬间换路后一瞬间3.3.电路的初始条件电路的初始条件初始条件为初始条件为 t=0时时u,i 及其各阶导数的值。及其各阶导数的值。下 页上 页注意0f(t)00t返 回第14页/共109页t=0+时刻时刻iuc
8、C+-电容的初始条件电容的初始条件0下 页上 页当i()为有限值时返 回第15页/共109页q(0+)=q(0)uC(0+)=uC(0)换路瞬间,若电容电流保持为有限值,换路瞬间,若电容电流保持为有限值,则电容电压(电荷)换路前后保持不变。则电容电压(电荷)换路前后保持不变。q=C uC电荷守恒下 页上 页结论返 回第16页/共109页电感的初始条件电感的初始条件t=0+时刻时刻0下 页上 页当u为有限值时iLuL+-返 回第17页/共109页L(0)=L(0)iL(0)=iL(0)磁链守恒 换路瞬间,若电感电压保持为有限值,换路瞬间,若电感电压保持为有限值,则电感电流(磁链)换路前后保持不变
9、。则电感电流(磁链)换路前后保持不变。下 页上 页结论返 回第18页/共109页L(0+)=L(0)iL(0+)=iL(0)qc(0+)=qc(0)uC(0+)=uC(0)换路定律电容电流和电感电压为有限值是换路定电容电流和电感电压为有限值是换路定律成立的条件。律成立的条件。换路瞬间,若电感电压保持换路瞬间,若电感电压保持为有限值,则电感电流(磁链)为有限值,则电感电流(磁链)换路前后保持不变。换路前后保持不变。换路瞬间,若电容电流保持换路瞬间,若电容电流保持为有限值,则电容电压(电荷)为有限值,则电容电压(电荷)换路前后保持不变。换路前后保持不变。换路定律反映了能量不能跃变。换路定律反映了能
10、量不能跃变。下 页上 页注意返 回第19页/共109页电路初始值的确定电路初始值的确定(2)由换路定律由换路定律 uC(0+)=uC(0)=8V(1)由由0电路求电路求 uC(0)uC(0)=8V(3)由由0+等效电路求等效电路求 iC(0+)iC(0)=0 iC(0+)例例1求求 iC(0+),uc(0+)电容开路下 页上 页+-10ViiC+uC-S10k40k+-10V+uC-10k40k+8V-0+等效电路等效电路+-10ViiC10k电容用电压源替代注意返 回第20页/共109页iL(0+)=iL(0)=2A例例 2t=0时闭合开关时闭合开关k,求求 uL(0+),iL(0+)先求先
11、求应用换路定律应用换路定律:电感用电流源替代解解电感短路下 页上 页iL+uL-L10VS14+-iL10V14+-由由0+等效电路求等效电路求 uL(0+)2A+uL-10V14+-注意返 回第21页/共109页求初始值的步骤求初始值的步骤:1.1.由换路前电路(稳定状态)求由换路前电路(稳定状态)求uC(0)和和iL(0);2.2.由换路定律得由换路定律得 uC(0+)和和 iL(0+)。3.3.画画0+等效电路。等效电路。4.4.由由0+电路求所需各变量的电路求所需各变量的0+值。值。b.b.电容(电感)用电压源(电流源)替代。电容(电感)用电压源(电流源)替代。a.a.换路后的电路换路
12、后的电路(取(取0+时刻值,方向与原假定的电容电压、电时刻值,方向与原假定的电容电压、电感电流方向相同)。感电流方向相同)。下 页上 页小结返 回第22页/共109页iL(0+)=iL(0)=iSuC(0+)=uC(0)=RiSuL(0+)=-RiS求求 iC(0+),uL(0+)例例3解解由由0电路得电路得:下 页上 页由由0+电路得电路得:S(t=0)+uLiLC+uCLRiSiCRiS0电路电路uL+iCRiSRiS+返 回第23页/共109页例4求求k闭合瞬间各支路电流和电感电压闭合瞬间各支路电流和电感电压解解下 页上 页由由0电路得电路得:由由0+电路得电路得:iL+uL-LS2+-
13、48V32CiL2+-48V32+uC返 回12A24V+-48V32+-iiC+-uL第24页/共109页求求k闭合瞬间流过它的电流值闭合瞬间流过它的电流值解解确定确定0值值给出给出0等效电路等效电路下 页上 页例5iL+20V-10+uC1010iL+20V-LS10+uC1010C返 回1A10V+uLiC+20V-10+1010第25页/共109页7.2 7.2 一阶电路的零输入响应一阶电路的零输入响应换路后外加激励为零,仅由动换路后外加激励为零,仅由动态元件初始储能产生的电压和态元件初始储能产生的电压和电流。电流。1.1.RC电路的零输入响应电路的零输入响应已知已知 uC(0)=U0
14、 uR=Ri零输入响应零输入响应下 页上 页iS(t=0)+uRC+uCR返 回第26页/共109页特征根特征根特征方程特征方程RCp+1=0则则下 页上 页代入初始值代入初始值 uC(0+)=uC(0)=U0A=U0iS(t=0)+uRC+uCR返 回第27页/共109页下 页上 页或或返 回第28页/共109页tU0uC0I0ti0令令 =RC ,称称为一阶电路的时间常数为一阶电路的时间常数电压、电流是随时间按同一指数规律衰减的函数;电压、电流是随时间按同一指数规律衰减的函数;连续函数跃变响应与初始状态成线性关系,其衰减快慢与响应与初始状态成线性关系,其衰减快慢与RC有关有关;下 页上 页
15、表明返 回第29页/共109页时间常数 的大小反映了电路过渡过程时间的长短 =RC 大大过渡过程时间长过渡过程时间长 小小过渡过程时间短过渡过程时间短电压初值一定:电压初值一定:R 大大(C一定一定)i=u/R 放电电流小放电电流小放电时间长放电时间长U0tuc0 小 大C 大大(R一定一定)W=Cu2/2 储能大储能大物理含义物理含义下 页上 页返 回第30页/共109页a.:电容电压衰减到原来电压电容电压衰减到原来电压36.8%所需的时间。所需的时间。工程上认为工程上认为,经过经过 35,过渡过程结束。过渡过程结束。U0 0.368U0 0.135U0 0.05U0 0.007U0 t0
16、2 3 5U0 U0 e-1 U0 e-2 U0 e-3 U0 e-5 下 页上 页注意返 回第31页/共109页 t2 t1 t1时刻曲线的斜率等于时刻曲线的斜率等于U0tuc0t1t2次切距的长度下 页上 页返 回b.时间常数时间常数 的几何意义:的几何意义:第32页/共109页能量关系电容不断释放能量被电阻吸收电容不断释放能量被电阻吸收,直到全部消耗完毕直到全部消耗完毕.设设 uC(0+)=U0电容放出能量:电容放出能量:电阻吸收(消耗)能量:电阻吸收(消耗)能量:下 页上 页uCR+C返 回第33页/共109页例1图示电路中的电容原充有图示电路中的电容原充有24V电压,求电压,求k闭合
17、后,闭合后,电容电压和各支路电流随时间变化的规律。电容电压和各支路电流随时间变化的规律。解解这是一个求一阶这是一个求一阶RC 零输入响应问题,有:零输入响应问题,有:+uC45Fi1t 0等效电路等效电路下 页上 页i3S3+uC265Fi2i1返 回第34页/共109页+uC45Fi1分流得:分流得:下 页上 页i3S3+uC265Fi2i1返 回第35页/共109页下 页上 页例2求求:(1)图示电路图示电路k闭合后各元件的电压和电流随闭合后各元件的电压和电流随时间变化的规律,时间变化的规律,(2)电容的初始储能和最终时电容的初始储能和最终时刻的储能及电阻的耗能。刻的储能及电阻的耗能。解解
18、这是一个求一阶这是一个求一阶RC 零输入响应问题,有:零输入响应问题,有:u(0+)=u(0)=20V返 回u1(0-)=4VuSC1=5F+-iC2=20Fu2(0-)=24V250k+第36页/共109页下 页上 页uk4F+-i20V250k返 回第37页/共109页下 页上 页初始储能初始储能最终储能最终储能电阻耗能电阻耗能返 回第38页/共109页2.2.RL电路的零输入响应电路的零输入响应特征方程特征方程 Lp+R=0特征根特征根 代入初始值代入初始值A=iL(0+)=I0t 0下 页上 页iLS(t=0)USL+uLRR1+-iL+uLR返 回第39页/共109页tI0iL0连续
19、函数跃变电压、电流是随时间按同一指数规律衰减的函数;电压、电流是随时间按同一指数规律衰减的函数;下 页上 页表明-RI0uLt0iL+uLR返 回第40页/共109页响应与初始状态成线性关系,其衰减快慢与响应与初始状态成线性关系,其衰减快慢与L/R有关有关;下 页上 页令令 称为一阶称为一阶RL电路时间常数电路时间常数 =L/R时间常数 的大小反映了电路过渡过程时间的长短L大大 W=LiL2/2 起始能量大起始能量大R小小 P=Ri2 放电过程消耗能量小放电过程消耗能量小放电慢,放电慢,大大 大大过渡过程时间长过渡过程时间长 小小过渡过程时间短过渡过程时间短物理含义物理含义电流初值iL(0)一
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 一阶 电路 时域 分析
限制150内