《椭圆的简单几何性质一.pptx》由会员分享,可在线阅读,更多相关《椭圆的简单几何性质一.pptx(51页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、复习引入复习引入1.椭圆的定义是什么?椭圆的定义是什么?第1页/共51页复习引入复习引入1.椭圆的定义是什么?椭圆的定义是什么?2.椭圆的标准方程是什么?椭圆的标准方程是什么?第2页/共51页利用利用椭圆的标准方程椭圆的标准方程研究椭圆的几何性质研究椭圆的几何性质以焦点在以焦点在x轴上的椭圆为例轴上的椭圆为例(ab0)讲授新课讲授新课第3页/共51页A1讲授新课讲授新课(ab0)1范围范围椭圆上点的坐标椭圆上点的坐标(x,y)都适合不等式都适合不等式B2byOF1F2xB1A2-aa-b第4页/共51页A1讲授新课讲授新课(ab0)椭圆位于直线椭圆位于直线xa和和yb围成的矩形里围成的矩形里|
2、x|a,|y|b1范围范围即即x2a2,y2b2,椭圆上点的坐标椭圆上点的坐标(x,y)都适合不等式都适合不等式B2byOF1F2xB1A2-aa-b第5页/共51页练习1:分别说出下列椭圆方程中x,y的取值范围-5x 5-3y 3-2x 2-4y 4第6页/共51页(ab0)2对称性对称性讲授新课讲授新课yOF1xF2第7页/共51页 在椭圆的标准方程里,把在椭圆的标准方程里,把x换成换成x,或,或把把y换成换成y,或把,或把x、y同时换成同时换成x、y时,时,方程有变化吗?这说明什么?方程有变化吗?这说明什么?(ab0)2对称性对称性讲授新课讲授新课yOF1F2x第8页/共51页YXOP(
3、x,y)P2(-x,y)P3(-x,-y)P1(x,-y)关于x轴对称关于y轴对称关于原点对称图形的对称实质是图形上点的对称第9页/共51页新课探究二、椭圆的对称性 把x换成-x,方程不变,说明椭圆关于()轴对称;把y换成-y,方程不变,说明椭圆关于()轴对称;把x换成-x,y换成-y,方程还是不变,说明椭圆关于()对称;中心:椭圆的对称中心叫做椭圆的中心。结论:坐标轴是椭圆的对称轴,原点是椭圆的对称中心。y x 原点oxy第10页/共51页椭圆关于椭圆关于y轴轴、x轴轴、原点原点都是对称的都是对称的原点原点是椭圆的对称中心是椭圆的对称中心椭圆的对称中心叫做椭圆的对称中心叫做椭圆的中心椭圆的中
4、心 在椭圆的标准方程里,把在椭圆的标准方程里,把x换成换成x,或,或把把y换成换成y,或把,或把x、y同时换成同时换成x、y时,时,方程有变化吗?这说明什么?方程有变化吗?这说明什么?(ab0)2对称性对称性讲授新课讲授新课yOF1F2x坐标轴坐标轴是椭圆的对称轴是椭圆的对称轴第11页/共51页A1讲授新课讲授新课3顶点顶点 只须只须令令x0,得,得yb,点点B1(0,b)、B2(0,b)是椭圆和是椭圆和y轴的两个交点;轴的两个交点;令令y0,得得xa,点点A1(a,0)、A2(a,0)是椭圆和是椭圆和x轴的两个交点轴的两个交点yOF1F2xB2B1A2(ab0).第12页/共51页2、椭圆的
5、顶点、椭圆的顶点令 x=0,得 y=?,说明椭圆与 y轴的交点(),令 y=0,得 x=?,说明椭圆与 x轴的交点()。*顶点:椭圆与它的对称轴的四个交点,叫做椭圆的顶点。oxyB1(0,b)B2(0,-b)A1A2(a,0)0,ba,0*长轴、短轴:线段A1A2、B1B2分别叫做椭圆的长轴和短轴。a、b分别叫做椭圆的长半轴长和短半轴长。焦点总在长轴上!第13页/共51页A1讲授新课讲授新课3顶点顶点 只须令只须令x0,得,得yb,点,点B1(0,b)、B2(0,b)是椭圆和是椭圆和y轴的两个交点;令轴的两个交点;令y0,得得xa,点,点A1(a,0)、A2(a,0)是椭圆和是椭圆和x轴的两个
6、交点轴的两个交点yOF1F2xB2B1A2(ab0).第14页/共51页A1讲授新课讲授新课3顶点顶点椭圆有四个顶点:椭圆有四个顶点:A1(a,0)、A2(a,0)、B1(0,b)、B2(0,b)椭圆和它的对称轴的四个交点叫椭圆和它的对称轴的四个交点叫椭圆的顶点椭圆的顶点 只须令只须令x0,得,得yb,点,点B1(0,b)、B2(0,b)是椭圆和是椭圆和y轴的两个交点;令轴的两个交点;令y0,得得xa,点,点A1(a,0)、A2(a,0)是椭圆和是椭圆和x轴的两个交点轴的两个交点yOF1F2xB2B1A2第15页/共51页线段线段A1A2、B1B2分别叫做椭圆的分别叫做椭圆的长轴长轴和和短轴短
7、轴.长轴长轴的长等于的长等于2a.短轴短轴的长等于的长等于2b.A1讲授新课讲授新课3顶点顶点yOF1F2xB2B1A2cb第16页/共51页线段线段A1A2、B1B2分别叫做椭圆的分别叫做椭圆的长轴长轴和和短轴短轴.长轴长轴的长等于的长等于2a.短轴短轴的长等于的长等于2b.A1讲授新课讲授新课3顶点顶点yOF1F2xB2B1A2cba叫做椭圆的叫做椭圆的长半轴长长半轴长b叫做椭圆的叫做椭圆的短半轴长短半轴长第17页/共51页线段线段A1A2、B1B2分别叫做椭圆的分别叫做椭圆的长轴长轴和和短轴短轴.长轴长轴的长等于的长等于2a.短轴短轴的长等于的长等于2b.A1讲授新课讲授新课3顶点顶点y
8、OF1F2xB2B1A2cba叫做椭圆的叫做椭圆的长半轴长长半轴长b叫做椭圆的叫做椭圆的短半轴长短半轴长|B1F1|B1F2|B2F1|B2F2|第18页/共51页a线段线段A1A2、B1B2分别叫做椭圆的分别叫做椭圆的长轴长轴和和短轴短轴.长轴长轴的长等于的长等于2a.短轴短轴的长等于的长等于2b.A1讲授新课讲授新课3顶点顶点yOF1F2xB2B1A2cba叫做椭圆的叫做椭圆的长半轴长长半轴长b叫做椭圆的叫做椭圆的短半轴长短半轴长|B1F1|B1F2|B2F1|B2F2|a第19页/共51页a线段线段A1A2、B1B2分别叫做椭圆的分别叫做椭圆的长轴长轴和和短轴短轴.长轴长轴的长等于的长等
9、于2a.短轴短轴的长等于的长等于2b.A1讲授新课讲授新课3顶点顶点yOF1F2xB2B1A2cba叫做椭圆的叫做椭圆的长半轴长长半轴长b叫做椭圆的叫做椭圆的短半轴长短半轴长|B1F1|B1F2|B2F1|B2F2|a在在RtOB2F2中,中,|OF2|2|B2F2|2|OB2|2,即,即c2a2b2第20页/共51页讲授新课讲授新课 由椭圆的范围、对称性和顶点,由椭圆的范围、对称性和顶点,再进行描点画图,只须描出较少的再进行描点画图,只须描出较少的点,就可以得到较正确的图形点,就可以得到较正确的图形.小小 结结:第21页/共51页123-1-2-3-44y123-1-2-3-44y1 2 3
10、 4 5-1-5-2-3-4x1 2 3 4 5-1-5-2-3-4x根据前面所学有关知识画出下列图形(1)(2)A1 B1 A2 B2 B2 A2 B1 A1 第22页/共51页讲授新课讲授新课yOx椭圆的焦距与长轴长的比椭圆的焦距与长轴长的比椭圆的离心率椭圆的离心率ac0,0e14离心率离心率,叫做,叫做第23页/共51页讲授新课讲授新课yOx椭圆的焦距与长轴长的比椭圆的焦距与长轴长的比椭圆的离心率椭圆的离心率ac0,0e14离心率离心率,叫做,叫做第24页/共51页讲授新课讲授新课yOx椭圆的焦距与长轴长的比椭圆的焦距与长轴长的比椭圆的离心率椭圆的离心率ac0,0e14离心率离心率,叫做
11、,叫做第25页/共51页讲授新课讲授新课yOx椭圆的焦距与长轴长的比椭圆的焦距与长轴长的比椭圆的离心率椭圆的离心率ac0,0e14离心率离心率,叫做,叫做第26页/共51页讲授新课讲授新课yOx椭圆的焦距与长轴长的比椭圆的焦距与长轴长的比椭圆的离心率椭圆的离心率ac0,0e14离心率离心率,叫做,叫做第27页/共51页讲授新课讲授新课yOx椭圆的焦距与长轴长的比椭圆的焦距与长轴长的比椭圆的离心率椭圆的离心率ac0,0e14离心率离心率,叫做,叫做第28页/共51页讲授新课讲授新课yOx椭圆的焦距与长轴长的比椭圆的焦距与长轴长的比椭圆的离心率椭圆的离心率ac0,0e14离心率离心率,叫做,叫做第
12、29页/共51页讲授新课讲授新课椭圆的焦距与长轴长的比椭圆的焦距与长轴长的比椭圆的离心率椭圆的离心率ac0,0e14离心率离心率,叫做,叫做yOx第30页/共51页讲授新课讲授新课椭圆的焦距与长轴长的比椭圆的焦距与长轴长的比椭圆的离心率椭圆的离心率ac0,0e14离心率离心率,叫做,叫做第31页/共51页讲授新课讲授新课椭圆的焦距与长轴长的比椭圆的焦距与长轴长的比椭圆的离心率椭圆的离心率ac0,0e14离心率离心率,叫做,叫做第32页/共51页尝试成功比较下面两个椭圆的扁平程度第33页/共51页定定 义义图图 形形方方 程程范范 围围对称性对称性焦焦 点点顶顶 点点离心率离心率F1F2MyxO
13、yxOMF1F2|MF1|+|MF2|=2a(2a|F1F2|)(c,0)、(c,0)(0,c)、(0,c)(a,0)、(0,b)|x|a|y|b|x|b|y|a关于关于x轴、轴、y轴、原点对称轴、原点对称(b,0)、(0,a)第34页/共51页讲授新课讲授新课例例1 求椭圆求椭圆16x225y2400的长轴和短轴的长轴和短轴的长、离心率、焦点和顶点的坐标的长、离心率、焦点和顶点的坐标第35页/共51页例例1 1、已知椭圆方程为、已知椭圆方程为16x16x2 2+25y+25y2 2=400=400,则则它的长轴长是它的长轴长是:;短轴长是短轴长是:;焦距是焦距是:;离心率等于离心率等于:;焦
14、点坐标是焦点坐标是:;顶点坐标是顶点坐标是:;外切矩形的面积等于外切矩形的面积等于:;108680解题步骤:1、将椭圆方程转化为标准方程求a、b:2、确定焦点的位置和长轴的位置.第36页/共51页 2求适合下列条件的椭圆的标准方程求适合下列条件的椭圆的标准方程(1)a=6,e=,(1)a=6,e=,焦点在焦点在x x轴上轴上(2)(2)离心率离心率 e=0.8,e=0.8,焦距为焦距为8 8(3)(3)长轴是短轴的长轴是短轴的2 2倍倍,且过点且过点P(2,-6)P(2,-6)求椭圆的标准方程时,应:先定位(焦点),再定量(a、b)当焦点位置不确定时,要讨论,此时有两个解!第37页/共51页讲
15、授新课讲授新课练习练习 求求经过点经过点P(4,1),且长轴长是短轴,且长轴长是短轴长的长的2倍的椭圆的标准方程倍的椭圆的标准方程.第38页/共51页讲授新课讲授新课练习练习 求求经过点经过点P(4,1),且长轴长是短轴,且长轴长是短轴长的长的2倍的椭圆的标准方程倍的椭圆的标准方程.解:解:第39页/共51页讲授新课讲授新课练习练习 求求经过点经过点P(4,1),且长轴长是短轴,且长轴长是短轴长的长的2倍的椭圆的标准方程倍的椭圆的标准方程.解:解:第40页/共51页讲授新课讲授新课练习练习 求求经过点经过点P(4,1),且长轴长是短轴,且长轴长是短轴长的长的2倍的椭圆的标准方程倍的椭圆的标准方
16、程.解:解:第41页/共51页讲授新课讲授新课练习练习 求求经过点经过点P(4,1),且长轴长是短轴,且长轴长是短轴长的长的2倍的椭圆的标准方程倍的椭圆的标准方程.解:解:第42页/共51页讲授新课讲授新课练习练习 求求经过点经过点P(4,1),且长轴长是短轴,且长轴长是短轴长的长的2倍的椭圆的标准方程倍的椭圆的标准方程.解:解:第43页/共51页讲授新课讲授新课练习练习 求求经过点经过点P(4,1),且长轴长是短轴,且长轴长是短轴长的长的2倍的椭圆的标准方程倍的椭圆的标准方程.解:解:第44页/共51页讲授新课讲授新课练习练习 求求经过点经过点P(4,1),且长轴长是短轴,且长轴长是短轴长的
17、长的2倍的椭圆的标准方程倍的椭圆的标准方程.解:解:第45页/共51页讲授新课讲授新课练习练习 求求经过点经过点P(4,1),且长轴长是短轴,且长轴长是短轴长的长的2倍的椭圆的标准方程倍的椭圆的标准方程.解:解:第46页/共51页讲授新课讲授新课练习练习 求求经过点经过点P(4,1),且长轴长是短轴,且长轴长是短轴长的长的2倍的椭圆的标准方程倍的椭圆的标准方程.解:解:第47页/共51页已知椭圆 的离心率 ,求 的值 由 ,得:解:解:当椭圆的焦点在 轴上时,得 当椭圆的焦点在 轴上时,得 由 ,得 ,即 满足条件的 或 思考:第48页/共51页 练习练习2 2:过适合下列条件的椭圆的标准方程:过适合下列条件的椭圆的标准方程:(1 1)经过点)经过点 、;(2 2)长轴长等于)长轴长等于 ,离心率等于离心率等于 解解:(1 1)由题意,)由题意,,又又长轴在长轴在轴上,所以,椭圆的标准方程为轴上,所以,椭圆的标准方程为 (2 2)由已知,由已知,所以椭圆的标准方程为所以椭圆的标准方程为 或或 第49页/共51页2.习案习案、学案学案十一十一.课外作业课外作业1.阅读教科书;阅读教科书;第50页/共51页感谢您的观看!第51页/共51页
限制150内